Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-5051-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5051-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Pondi – a low-cost logger for long-term monitoring of methane, carbon dioxide, and nitrous oxide in aquatic and terrestrial systems
Martino E. Malerba
CORRESPONDING AUTHOR
Centre for Nature Positive Solutions, Department of Biology, School of Science, RMIT University, Melbourne, VIC 3000, Australia
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Blake Edwards
Leading Edge Engineering Solutions Pty. Ltd. (LEES), Yackandandah, VIC 3749, Australia
Lukas Schuster
Centre for Nature Positive Solutions, Department of Biology, School of Science, RMIT University, Melbourne, VIC 3000, Australia
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Omosalewa Odebiri
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Josh Glen
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Rachel Kelly
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Paul Phan
Centre for Nature Positive Solutions, Department of Biology, School of Science, RMIT University, Melbourne, VIC 3000, Australia
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Alistair Grinham
School of Civil Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
Peter I. Macreadie
Centre for Nature Positive Solutions, Department of Biology, School of Science, RMIT University, Melbourne, VIC 3000, Australia
School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia
Related authors
No articles found.
Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert
Hydrol. Earth Syst. Sci., 27, 2051–2073, https://doi.org/10.5194/hess-27-2051-2023, https://doi.org/10.5194/hess-27-2051-2023, 2023
Short summary
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.
Cited articles
Bastviken, D., Nygren, J., Schenk, J., Parellada Massana, R., and Duc, N. T.: Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger, Biogeosciences, 17, 3659–3667, https://doi.org/10.5194/bg-17-3659-2020, 2020.
Bell, K. and Malerba, M. E.: Biodiversity monitoring for biocredits: a case study comparing acoustic, eDNA, and traditional methods, Biodiversity and Conservation, 1–16, https://doi.org/10.1007/s10531-025-03083-0, 2025.
Bellassen, V., Stephan, N., Afriat, M., Alberola, E., Barker, A., Chang, J.-P., Chiquet, C., Cochran, I., Deheza, M., and Dimopoulos, C.: Monitoring, reporting and verifying emissions in the climate economy, Nature Climate Change, 5, 319–328, 2015.
Berthiaume, C., Cox, D., and Lugun, L.: An Improved and Robust Automated Greenhouse Gas Analyzer for Agricultural Fields, 2020.
Boesch, H., Liu, Y., Tamminen, J., Yang, D., Palmer, P. I., Lindqvist, H., Cai, Z., Che, K., Di Noia, A., and Feng, L.: Monitoring greenhouse gases from space, Remote Sensing, 13, 2700, https://doi.org/10.3390/rs13142700, 2021.
Bonetti, G., Trevathan-Tackett, S. M., Hebert, N., Carnell, P. E., and Macreadie, P. I.: Microbial community dynamics behind major release of methane in constructed wetlands, Applied Soil Ecology, 167, https://doi.org/10.1016/j.apsoil.2021.104163, 2021.
Borrego, C., Coutinho, M., Costa, A. M., Ginja, J., Ribeiro, C., Monteiro, A., Ribeiro, I., Valente, J., Amorim, J. H., Martins, H., Lopes, D., and Miranda, A. I.: Challenges for a New Air Quality Directive: The role of monitoring and modelling techniques, Urban Climate, 14, 328–341, https://doi.org/10.1016/j.uclim.2014.06.007, 2015.
Carey, R. O. and Migliaccio, K. W.: Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review, Environ. Manage., 44, 205–217, 2009.
Curcoll, R., Morguí, J.-A., Kamnang, A., Cañas, L., Vargas, A., and Grossi, C.: Metrology for low-cost CO2 sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO2 fluxes observations, Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, 2022.
Dalvai Ragnoli, M. and Singer, G.: The River Runner: a low-cost sensor prototype for continuous dissolved greenhouse gas measurements, J. Sens. Sens. Syst., 13, 41–61, https://doi.org/10.5194/jsss-13-41-2024, 2024.
Demanega, I., Mujan, I., Singer, B. C., Anđelković, A. S., Babich, F., and Licina, D.: Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions, Building and Environment, 187, 107415, https://doi.org/10.1016/j.buildenv.2020.107415, 2021.
Dey, A.: Semiconductor metal oxide gas sensors: A review, Materials Science and Engineering: B, 229, 206–217, https://doi.org/10.1016/j.mseb.2017.12.036, 2018.
EPA: Inventory of U. S. Greenhouse Gas Emissions and Sinks: 1990–2021, U. S. Environmental Protection Agency, EPA 430-R-23-002, https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf (last access: 16 July 2025), 2023.
Eugster, W. and Kling, G. W.: Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies, Atmos. Meas. Tech., 5, 1925–1934, https://doi.org/10.5194/amt-5-1925-2012, 2012.
Eugster, W., Laundre, J., Eugster, J., and Kling, G. W.: Long-term reliability of the Figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska, Atmos. Meas. Tech., 13, 2681–2695, https://doi.org/10.5194/amt-13-2681-2020, 2020.
Grinham, A., Albert, S., Deering, N., Dunbabin, M., Bastviken, D., Sherman, B., Lovelock, C. E., and Evans, C. D.: The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia, Hydrol. Earth Syst. Sci., 22, 5281–5298, https://doi.org/10.5194/hess-22-5281-2018, 2018.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., and Smith, P.: Natural climate solutions, Proceedings of the National Academy of Sciences, 114, 11645–11650, 2017.
Harmon, T. C., Dierick, D., Trahan, N., Allen, M. F., Rundel, P. W., Oberbauer, S. F., Schwendenmann, L., and Zelikova, T. J.: Low-cost soil CO2 efflux and point concentration sensing systems for terrestrial ecology applications, Methods in Ecology and Evolution, 6, 1358–1362, 2015.
Höchst, J., Bellafkir, H., Lampe, P., Vogelbacher, M., Mühling, M., Schneider, D., Lindner, K., Rösner, S., Schabo, D. G., and Farwig, N.: Bird@Edge: bird species recognition at the edge, International Conference on Networked Systems, 69–86, https://doi.org/10.1007/978-3-031-17436-0_6, 2022.
Hoffmann, M., Schulz-Hanke, M., Garcia Alba, J., Jurisch, N., Hagemann, U., Sachs, T., Sommer, M., and Augustin, J.: A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components, Atmos. Meas. Tech., 10, 109–118, https://doi.org/10.5194/amt-10-109-2017, 2017.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water CO2 and CH4 emissions from very small ponds, Nature Geoscience, 9, 222–226, 2016.
Houghton, R. A., Byers, B., and Nassikas, A. A.: A role for tropical forests in stabilizing atmospheric CO2, Nature Climate Change, 5, 1022–1023, 2015.
Hu, Z., Lee, J. W., Chandran, K., Kim, S., and Khanal, S. K.: Nitrous oxide (N2O) emission from aquaculture: a review, Environmental Science & Technology, 46, 6470–6480, 2012.
IPCC: Climate change 2007: synthesis report. Contribution of working group I, II and III to the fourth assessment report of the intergovernmental panel on climate change, ISBN 92-9169-122-4, 2007.
IPCC: Summary for Policymakers, in: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, 1–34, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023.
Janssens-Maenhout, G., Pinty, B., Dowell, M., Zunker, H., Andersson, E., Balsamo, G., Bézy, J. L., Brunhes, T., Bösch, H., Bojkov, B., Brunner, D., Buchwitz, M., Crisp, D., Ciais, P., Counet, P., Dee, D., Denier van der Gon, H., Dolman, H., Drinkwater, M. R., Dubovik, O., Engelen, R., Fehr, T., Fernandez, V., Heimann, M., Holmlund, K., Houweling, S., Husband, R., Juvyns, O., Kentarchos, A., Landgraf, J., Lang, R., Löscher, A., Marshall, J., Meijer, Y., Nakajima, M., Palmer, P. I., Peylin, P., Rayner, P., Scholze, M., Sierk, B., Tamminen, J., and Veefkind, P.: Toward an Operational Anthropogenic CO2 Emissions Monitoring and Verification Support Capacity, Bulletin of the American Meteorological Society, 101, E1439–E1451, https://doi.org/10.1175/bams-d-19-0017.1, 2020.
Kent, E. R., Bailey, S. K., Stephens, J., Horwath, W. R., and Paw U, K. T.: Measurements of greenhouse gas flux from composting green-waste using micrometeorological mass balance and flow-through chambers, Compost Science & Utilization, 27, 97–115, 2019.
Li, H., Guo, Y., Zhao, H., Wang, Y., and Chow, D.: Towards automated greenhouse: A state of the art review on greenhouse monitoring methods and technologies based on internet of things, Computers and Electronics in Agriculture, 191, 106558, https://doi.org/10.1016/j.compag.2021.106558, 2021a.
Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., and Zhang, H.: The role of freshwater eutrophication in greenhouse gas emissions: A review, Sci. Total Environ., 768, 144582, https://doi.org/10.1016/j.scitotenv.2020.144582, 2021b.
Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G., and Jeffrey, L. C.: iAMES: An inexpensive, Automated Methane Ebullition Sensor, Environ. Sci. Technol., 53, 6420–6426, https://doi.org/10.1021/acs.est.9b01881, 2019.
Malerba, M. E., Wright, N., and Macreadie, P. I.: A continental-scale assessment of density, size, distribution and historical trends of farm dams using deep learning convolutional neural networks, Remote Sensing, 13, 319, https://doi.org/10.3390/rs13020319, 2021.
Malerba, M. E., de Kluyver, T., Wright, N., Schuster, L., and Macreadie, P. I.: Methane emissions from agricultural ponds are underestimated in national greenhouse gas inventories, Communications Earth & Environment, 3, 306, https://doi.org/10.1038/s43247-022-00638-9, 2022a.
Malerba, M. E., Friess, D. A., Peacock, M., Grinham, A., Taillardat, P., Rosentreter, J. A., Webb, J., Iram, N., Al-Haj, A. N., and Macreadie, P. I.: Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands, One Earth, 5, 1336–1341, 2022b.
Malerba, M. E., Lindenmayer, D. B., Scheele, B. C., Waryszak, P., Yilmaz, I. N., Schuster, L., and Macreadie, P. I.: Fencing farm dams to exclude livestock halves methane emissions and improves water quality, Global Change Biology, https://doi.org/10.1111/gcb.16237, 2022c.
Martinsen, K. T., Kragh, T., and Sand-Jensen, K.: Technical note: A simple and cost-efficient automated floating chamber for continuous measurements of carbon dioxide gas flux on lakes, Biogeosciences, 15, 5565–5573, https://doi.org/10.5194/bg-15-5565-2018, 2018.
McGinn, S. M.: Measuring greenhouse gas emissions from point sources in agriculture, Canadian Journal of Soil Science, 86, 355–371, https://doi.org/10.4141/s05-099, 2006.
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?, Environ. Int., 116, 286–299, https://doi.org/10.1016/j.envint.2018.04.018, 2018.
Naslund, L. C., Mehring, A. S., Rosemond, A. D., and Wenger, S. J.: Toward more accurate estimates of carbon emissions from small reservoirs, Limnology and Oceanography, https://doi.org/10.1002/lno.12577, 2024.
Nguyen, T. K. L., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Nghiem, L. D., Liu, Y., Ni, B., and Hai, F. I.: Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes, Sci. Total Environ., 671, 1302–1313, 2019.
Odebiri, O., Archbold, J., Glen, J., Macreadie, P. I., and Malerba, M. E.: Excluding livestock access to farm dams reduces methane emissions and boosts water quality, Science of The Total Environment, 175420, https://doi.org/10.1016/j.scitotenv.2024.175420, 2024.
Ollivier, Q. R., Maher, D. T., Pitfield, C., and Macreadie, P. I.: Punching above their weight: Large release of greenhouse gases from small agricultural dams, Glob. Chang. Biol., 25, 721–732, https://doi.org/10.1111/gcb.14477, 2018.
Ollivier, Q. R., Maher, D. T., Pitfield, C., and Macreadie, P. I.: Winter emissions of CO2, CH4, and N2O from temperate agricultural dams: fluxes, sources, and processes, Ecosphere, 10, https://doi.org/10.1002/ecs2.2914, 2019.
Pérez-Granados, C.: BirdNET: applications, performance, pitfalls and future opportunities, Ibis, 165, 1068–1075, 2023.
Pigliautile, I., Marseglia, G., and Pisello, A. L.: Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians' Exposure in Urban Areas, Sustainability, 12, https://doi.org/10.3390/su12093936, 2020.
Rajak, P., Ganguly, A., Adhikary, S., and Bhattacharya, S.: Internet of Things and smart sensors in agriculture: Scopes and challenges, Journal of Agriculture and Food Research, 14, 100776, https://doi.org/10.1016/j.jafr.2023.100776, 2023.
Rodrigues, C. I. D., Brito, L. M., and Nunes, L. J.: Soil carbon sequestration in the context of climate change mitigation: A review, Soil Systems, 7, 64, https://doi.org/10.3390/soilsystems7030064, 2023.
Rodríguez-García, V. G., Palma-Gallardo, L. O., Silva-Olmedo, F., and Thalasso, F.: A simple and low-cost open dynamic chamber for the versatile determination of methane emissions from aquatic surfaces, Limnology and Oceanography: Methods, https://doi.org/10.1002/lom3.10584, 2023.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., and Eyre, B. D.: Half of global methane emissions come from highly variable aquatic ecosystem sources, Nature Geoscience, 14, 225–230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
Salam, A.: Internet of things for environmental sustainability and climate change, in: Internet of Things for sustainable community development: Wireless communications, sensing, and systems, Springer, 33–69, https://doi.org/10.1007/978-3-031-62162-8_2, 2024.
Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P. A., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa, M., Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M. A., Hopcroft, P. O., Hugelius, G., Ito, A., Jain, A. K., Janardanan, R., Johnson, M. S., Kleinen, T., Krummel, P. B., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R., Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C., Ramonet, M., Riley, W. J., Rocher-Ros, G., Rosentreter, J. A., Sasakawa, M., Segers, A., Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber, T. S., van der Werf, G. R., Worthy, D. E. J., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: Global Methane Budget 2000–2020, Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, 2025.
Schuster, L., Taillardat, P., Macreadie, P. I., and Malerba, M. E.: Freshwater wetland restoration and conservation are long-term natural climate solutions, Science of the Total Environment, 922, 171218, https://doi.org/10.1016/j.scitotenv.2024.171218, 2024.
Shafi, U., Mumtaz, R., Iqbal, N., Zaidi, S. M. H., Zaidi, S. A. R., Hussain, I., and Mahmood, Z.: A multi-modal approach for crop health mapping using low altitude remote sensing, internet of things (IoT) and machine learning, IEEE Access, 8, 112708–112724, 2020.
Shah, A., Laurent, O., Lienhardt, L., Broquet, G., Rivera Martinez, R., Allegrini, E., and Ciais, P.: Characterising the methane gas and environmental response of the Figaro Taguchi Gas Sensor (TGS) 2611-E00, Atmos. Meas. Tech., 16, 3391–3419, https://doi.org/10.5194/amt-16-3391-2023, 2023.
Sieczko, A. K., Duc, N. T., Schenk, J., Pajala, G., Rudberg, D., Sawakuchi, H. O., and Bastviken, D.: Diel variability of methane emissions from lakes, Proceedings of the National Academy of Sciences, 117, 21488–21494, 2020.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., and Jafari, M.: Agriculture, forestry and other land use (AFOLU), in: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 811–922, https://doi.org/10.1017/CBO9781107415416.017, 2014.
Sø, J. S., Sand-Jensen, K., and Kragh, T.: Self-Made Equipment for Automatic Methane Diffusion and Ebullition Measurements From Aquatic Environments, Journal of Geophysical Research: Biogeosciences, 129, https://doi.org/10.1029/2024jg008035, 2024.
Thakur, I. S. and Medhi, K.: Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities, Bioresource Technology, 282, 502–513, 2019.
Thanh Duc, N., Silverstein, S., Wik, M., Crill, P., Bastviken, D., and Varner, R. K.: Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments, Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, 2020.
UN Environment Programme: Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again). Nairobi, https://doi.org/10.59117/20.500.11822/43922, 2023.
van den Bossche, M., Rose, N. T., and De Wekker, S. F. J.: Potential of a low-cost gas sensor for atmospheric methane monitoring, Sensors and Actuators B: Chemical, 238, 501–509, 2017.
Varadharajan, C. and Hemond, H. F.: Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake, Journal of Geophysical Research: Biogeosciences, 117, https://doi.org/10.1029/2011JG001866, 2012.
Watkins, T.: Draft roadmap for next generation air monitoring, Environmental Protection Agency, 2, 2013.
Webb, J. R., Santos, I. R., Maher, D. T., and Finlay, K.: The importance of aquatic carbon fluxes in net ecosystem carbon budgets: A catchment-scale review, Ecosystems, 22, 508–527, 2019.
Wu, H., Cui, H., Fu, C., Li, R., Qi, F., Liu, Z., Yang, G., Xiao, K., and Qiao, M.: Unveiling the crucial role of soil microorganisms in carbon cycling: A review, Science of The Total Environment, 168627, https://doi.org/10.1016/j.scitotenv.2023.168627, 2023.
Co-editor-in-chief
Chamber-based flux measurements for carbon dioxide, methane, nitrous oxide and other climate-active gases show high temporal and spatial variability and there is a need for autonomous, simple and affordable systems. The author present such a device that can be constructed for a few thousands euros/dollars. The Pondi logger will facilitate greenhouse gas studies in remote places and will be excellent tools to involve citizens in our climate studies.
Chamber-based flux measurements for carbon dioxide, methane, nitrous oxide and other...
Short summary
The Pondi is a cost-effective, lightweight logger designed for long-term monitoring of carbon dioxide, methane, and nitrous oxide emissions in both terrestrial and aquatic ecosystems. It addresses key challenges in greenhouse gas monitoring by providing an automated, low-cost, solar-powered solution with cloud connectivity and real-time analytics. Its robust design enables deployment in diverse environmental conditions, supporting large-scale, high-resolution emission assessments.
The Pondi is a cost-effective, lightweight logger designed for long-term monitoring of carbon...
Altmetrics
Final-revised paper
Preprint