Articles | Volume 22, issue 3
https://doi.org/10.5194/bg-22-691-2025
https://doi.org/10.5194/bg-22-691-2025
Research article
 | 
06 Feb 2025
Research article |  | 06 Feb 2025

Root growth dynamics and allocation as a response to rapid and local changes in soil moisture

Samuele Ceolin, Stanislaus J. Schymanski, Dagmar van Dusschoten, Robert Koller, and Julian Klaus

Related authors

Different tracer, different bias: using radon to reveal flow paths beyond the Window of Detection
Mortimer L. Bacher, Julian Klaus, Adam S. Ward, Jasmine Krause, Catalina Segura, and Clarissa Glaser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1625,https://doi.org/10.5194/egusphere-2025-1625, 2025
Short summary
The influence of hillslope topography on beech water use: a comparative study in two different climates
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024,https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Vegetation optimality explains the convergence of catchments on the Budyko curve
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022,https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022,https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Technical note: Do different projections matter for the Budyko framework?
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022,https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary

Cited articles

Amenu, G. G. and Kumar, P.: A model for hydraulic redistribution incorporating coupled soil-root moisture transport, Hydrol. Earth Syst. Sci., 12, 55–74, https://doi.org/10.5194/hess-12-55-2008, 2008. a
Bauerle, T. L., Smart, D. R., Bauerle, W. L., Stockert, C., and Eissenstat, D. M.: Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate, New Phytol., 179, 857–866, https://doi.org/10.1111/j.1469-8137.2008.02489.x, 2008. a
Carvajal, M., Cooke, D., and Clarkson, D.: Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function, Planta, 199, 372–381, https://doi.org/10.1007/BF00195729, 1996. a
Ceolin, S.: MRI images and code for data analysis, Zenodo [code and data set], https://doi.org/10.5281/zenodo.14236332, 2025. a
Chaves, M. and Davies, B.: Drought effects and water use efficiency: improving crop production in dry environments, Funct. Plant Biol., 37, iii, https://doi.org/10.1071/FPv37n2_FO, 2010. a
Download
Short summary
We investigated if and how roots of maize plants respond to multiple abrupt changes in soil moisture. We measured root lengths using a magnetic resonance imaging technique and calculated changes in growth rates after applying water pulses. The root growth rates increased in wetted soil layers within 48 hours and decreased in non-wetted layers, indicating fast adaptation of the root systems to moisture changes. Our findings could improve irrigation management and vegetation models.
Share
Altmetrics
Final-revised paper
Preprint