Articles | Volume 22, issue 3
https://doi.org/10.5194/bg-22-705-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-705-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combined effects of topography, soil moisture, and snow cover regimes on growth responses of grasslands in a low- mountain range (Vosges, France)
Pierre-Alexis Herrault
CORRESPONDING AUTHOR
UMR LIVE 6554 CNRS, University of Strasbourg, 3 Rue de l'Argonne, 67000 Strasbourg, France
Albin Ullmann
UMR BIOGEOSCIENCE 6282 CNRS, University of Bourgogne, 6 Bd Gabriel, 21000 Dijon, France
Damien Ertlen
UMR LIVE 6554 CNRS, University of Strasbourg, 3 Rue de l'Argonne, 67000 Strasbourg, France
Related authors
No articles found.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Cited articles
Ashcroft, M. B.: Identifying refugia from climate change, J. Biogeogr., 37, 1407–1413, https://doi.org/10.1111/j.1365-2699.2010.02300.x, 2010. a
Baptist, F., Yoccoz, N. G., and Choler, P.: Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient, Plant Soil, 328, 397–410, 2010.
Environmental Change in Mountains and Uplands (1st ed.), Routledge, https://doi.org/10.4324/9781315824826, 2000. a
Bickford, C. P., Hunt, J. E., and Heenan, P. B.: Microclimate characteristics of alpine bluff ecosystems of New Zealand's South Island, and implications for plant growth, New Zeal. J. Ecol., 35, 273, 2011. a
Bjorkman, A. D., Vellend, M., Frei, E. R., and Henry, G. H.: Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic, Glob. Change Biol., 23, 1540–1551, 2017. a
Brilli, F., Hörtnagl, L., Hammerle, A., Haslwanter, A., Hansel, A., Loreto, F., and Wohlfahrt, G.: Leaf and ecosystem response to soil water availability in mountain grasslands, Agr. Forest Meteorol., 151, 1731–1740, 2011. a
Brookshire, E. and Weaver, T.: Long-term decline in grassland productivity driven by increasing dryness, Nat. Commun., 6, 7148, https://doi.org/10.1038/ncomms8148, 2015. a
Bucher, S. F., König, P., Menzel, A., Migliavacca, M., Ewald, J., and Römermann, C.: Traits and climate are associated with first flowering day in herbaceous species along elevational gradients, Ecol. Evol., 8, 1147–1158, 2018. a
Burnham, K. P. and Anderson, D. R.: Multimodel inference: understanding AIC and BIC in model selection, Sociol. Method. Res., 33, 261–304, 2004. a
Butler, A. B., Martin, J. A., Palmer, W. E., and Carroll, J. P.: Winter use of south Florida dry prairie by two declining grassland passerines, Condor, 111, 511–522, 2009. a
Cannone, N., Sgorbati, S., and Guglielmin, M.: Unexpected impacts of climate change on alpine vegetation, Front. Ecol. Environ., 5, 360–364, 2007. a
Cao, R., Chen, J., Shen, M., and Tang, Y.: An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data, Agr. Forest Meteorol., 200, 9–20, 2015. a
Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., and Choler, P.: Observed long-term greening of alpine vegetation – a case study in the French Alps, Environ. Res. Lett., 12, 114006, https://doi.org/10.1088/1748-9326/aa84bd, 2017. a, b, c
Cassou, C. and Cattiaux, J.: Disruption of the European climate seasonal clock in a warming world, Nat. Clim. Change, 6, 589–594, 2016. a
Chawla, N. V.: Data mining for imbalanced datasets: An overview, Data mining and knowledge discovery handbook, https://doi.org/10.1007/0-387-25465-X_40, 875–886, 2010. a
Chevin, L.-M. and Lande, R.: When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population?, Evolution, 64, 1143–1150, 2010. a
Corona-Lozada, M., Morin, S., and Choler, P.: Drought offsets the positive effect of summer heat waves on the canopy greenness of mountain grasslands, Agr. Forest Meteorol., 276, 107617, https://doi.org/10.1016/j.agrformet.2019.107617, 2019. a
Cortés, J., Mahecha, M. D., Reichstein, M., Myneni, R. B., Chen, C., and Brenning, A.: Where are global vegetation greening and browning trends significant?, Geophys. Res. Lett., 48, e2020GL091496, https://doi.org/10.1029/2020GL091496, 2021. a
Dietz, A. J., Wohner, C., and Kuenzer, C.: European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products, Remote Sens., 4, 2432–2454, 2012. a
Dobbert, S., Albrecht, E. C., Pape, R., and Löffler, J.: Alpine shrub growth follows bimodal seasonal patterns across biomes–unexpected environmental controls, Commun. Biol., 5, 793, https://doi.org/10.1038/s42003-022-03741-x, 2022. a
Dullinger, S., Dirnböck, T., Greimler, J., and Grabherr, G.: A resampling approach for evaluating effects of pasture abandonment on subalpine plant species diversity, J. Veg. Sci., 14, 243–252, 2003. a
Duparc, A., Redjadj, C., Viard-Crétat, F., Lavorel, S., Austrheim, G., and Loison, A.: Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands, Appl. Veg. Sci., 16, 305–316, 2013. a
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and Mérindol, L.: Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation, J. Appl. Meteorol. Clim., 48, 429–449, 2009. a
Engler, R., Randin, C. F., Vittoz, P., Czáka, T., Beniston, M., Zimmermann, N. E., and Guisan, A.: Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?, Ecography, 32, 34–45, 2009. a
Ferrez, Y.: Guide phytosociologique des prairies du massif des Vosges et du Jura alsacien, Conservatoire botanique national de Franche-Comté, https://www.parc-vosges-nord.fr/wp-content/uploads/2018/11/guide-phytosociologiques-des-prairies-du-massif-vosgien.pdf (last access: 2 February 2025), 2017. a
Filippa, G., Cremonese, E., Galvagno, M., Bayle, A., Choler, P., Bassignana, M., Piccot, A., Poggio, L., Oddi, L., and Gascoin, S.: On the distribution and productivity of mountain grasslands in the Gran Paradiso National Park, NW Italy: A remote sensing approach, Int. J. Appl. Earth Obs., 108, 102718, https://doi.org/10.1016/j.jag.2022.102718, 2022. a, b
Francon, L., Corona, C., Till-Bottraud, I., Choler, P., Carlson, B., Charrier, G., Améglio, T., Morin, S., Eckert, N., and Roussel, E.: Assessing the effects of earlier snow melt-out on alpine shrub growth: the sooner the better?, Ecol. Indic., 115, 106455, https://doi.org/10.1016/j.ecolind.2020.106455, 2020. a
Frei, E. R., Ghazoul, J., and Pluess, A. R.: Plastic responses to elevated temperature in low and high elevation populations of three grassland species, PLoS One, 9, e98677, https://doi.org/10.1371/journal.pone.0098677, 2014. a
Frenzel, T.: Effects of grassland management on arthropod diversity, 2022. a
Giaccone, E., Luoto, M., Vittoz, P., Guisan, A., Mariéthoz, G., and Lambiel, C.: Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps, Earth Surf. Proc. Land., 44, 3093–3107, 2019. a
Gillet, F., Mauchamp, L., Badot, P.-M., and Mouly, A.: Recent changes in mountain grasslands: a vegetation resampling study, Ecol. Evol., 6, 2333–2345, 2016. a
Goepp, S.: Origine, histoire et dynamique des Hautes-Chaumes du massif vosgien, Déterminismes environnementaux et actions de l'Homme, PhD thesis, Université Louis Pasteur-Strasbourg I, https://publication-theses.unistra.fr/public/theses_doctorat/2007/GOEPP_Stephanie_2007.pdf (last access: 2 February 2025), 2007. a, b, c
Graae, B. J., Vandvik, V., Armbruster, W. S., Eiserhardt, W. L., Svenning, J.-C., Hylander, K., Ehrlén, J., Speed, J. D., Klanderud, K., and Bråthen, K. A.: Stay or go–how topographic complexity influences alpine plant population and community responses to climate change, Perspectives in Plant Ecology, Evolution and Systematics, 30, 41–50, 2018. a, b, c
Grignolio, S., Parrini, F., Bassano, B., Luccarini, S., and Apollonio, M.: Habitat selection in adult males of Alpine ibex, Capra ibex ibex, Folia Zool., 52, 113–120, 2003. a
Grigulis, K. and Lavorel, S.: Simple field-based surveys reveal climate-related anomalies in mountain grassland production, Ecol. Indic., 116, 106519, https://doi.org/10.1016/j.ecolind.2020.106519, 2020. a
Gudex-Cross, D., Keyser, S. R., Zuckerberg, B., Fink, D., Zhu, L., Pauli, J. N., and Radeloff, V. C.: Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity, Remote Sens. Environ., 255, 112309, https://doi.org/10.1016/j.rse.2021.112309, 2021. a
Herberich, M. M., Schädle, J. E., and Tielbörger, K.: Plant community productivity and soil water are not resistant to extreme experimental drought in temperate grasslands but in the understory of temperate forests, Sci. Total Environ., 891, 164625, https://doi.org/10.1016/j.scitotenv.2023.164625, 2023. a
Herrault, P.-A., Ullmann, A., and Ertlen, D.: Statistical analysis to investigate phenology of low mountain grasslands, https://doi.org/10.5281/zenodo.10204065, Zenodo [data set], 2024a. a
Herrault, P.-A., Ullmann, A., and Ertlen, D.: Statistical analysis to investigate phenology of low mountain grasslands, GitHub [software], https://github.com/herrault/Article-Phenology-of-Low-Mountain-Grasslands/tree/main(last access: 30 January 2025), 2024b. a
Hua, X., Ohlemüller, R., and Sirguey, P.: Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems, Environ. Adv., 8, 100234, https://doi.org/10.1016/j.envadv.2022.100234, 2022. a, b
Huelber, K., Bardy, K., and Dullinger, S.: Effects of snowmelt timing and competition on the performance of alpine snowbed plants, Perspectives in Plant Ecology, Evolution and Systematics, 13, 15–26, 2011. a
Inouye, D. W.: The ecological and evolutionary significance of frost in the context of climate change, Ecol. Lett., 3, 457–463, 2000. a
Inouye, D. W.: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers, Ecology, 89, 353–362, 2008. a
Jonas, T., Rixen, C., Sturm, M., and Stoeckli, V.: How alpine plant growth is linked to snow cover and climate variability, J. Geophys. Res.-Biogeo., 113, https://doi.org/10.1029/2007JG000680, 2008. a, b
Jump, A. S. and Peñuelas, J.: Running to stand still: adaptation and the response of plants to rapid climate change, Ecol. Lett., 8, 1010–1020, 2005. a
Kempf, M.: Enhanced trends in spectral greening and climate anomalies across Europe, Environ. Monit. Assess., 195, 260, 2023.
Keppel, G. and Wardell-Johnson, G. W.: Refugia: keys to climate change management, Glob. Change Biol., 18, 2389–2391, 2012. a
Keppel, G., Robinson, T. P., Wardell-Johnson, G. W., Yates, C. J., Van Niel, K. P., Byrne, M., and Schut, A. G.: A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot, Ann. Bot., 119, 289–300, 2017. a
Klein, G., Rebetez, M., Rixen, C., and Vitasse, Y.: Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming, Int. J. Biometeorol., 62, 1755–1762, 2018. a
Körner, C. and Kèorner, C.: Alpine plant life: functional plant ecology of high mountain ecosystems, Springer, 1999.
Ledoux, E., Girard, G., De Marsily, G., Villeneuve, J., and Deschenes, J.: Spatially distributed modeling: conceptual approach, coupling surface water and groundwater, Unsaturated flow in hydrologic modeling: Theory and practice, 435–454, 1989. a
Lenoir, J., Gégout, J.-C., Marquet, P. A., de Ruffray, P., and Brisse, H.: A significant upward shift in plant species optimum elevation during the 20th century, Science, 320, 1768–1771, 2008. a
Lewińska, K. E., Ives, A. R., Morrow, C. J., Rogova, N., Yin, H., Elsen, P. R., de Beurs, K., Hostert, P., and Radeloff, V. C.: Beyond “greening” and “browning”: Trends in grassland ground cover fractions across Eurasia that account for spatial and temporal autocorrelation, Glob. Change Biol., 29, 4620–4637, https://doi.org/10.1111/gcb.16800, 2023. a
Lindstrom, M. J. and Bates, D. M.: Nonlinear mixed effects models for repeated measures data, Biometrics, 673–687, https://doi.org/10.1002/0470013192.bsa441, 1990. a
Liu, Q., Piao, S., Janssens, I. A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R. B., Peñuelas, J., and Wang, T.: Extension of the growing season increases vegetation exposure to frost, Nat. Commun., 9, 426, https://doi.org/10.1038/s41467-017-02690-y, 2018. a
Luo, M., Meng, F., Sa, C., Duan, Y., Bao, Y., Liu, T., and De Maeyer, P.: Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau, Catena, 206, 105505, https://doi.org/10.1371/journal.pone.0190313, 2021. a
Marchin, R. M., McHugh, I., Simpson, R. R., Ingram, L. J., Balas, D. S., Evans, B. J., and Adams, M. A.: Productivity of an Australian mountain grassland is limited by temperature and dryness despite long growing seasons, Agr. Forest Meteorol., 256, 116–124, 2018. a
Möhl, P., von Büren, R. S., and Hiltbrunner, E.: Growth of alpine grassland will start and stop earlier under climate warming, Nat. Commun., 13, 7398, https://doi.org/10.1038/s41467-022-35194-5, 2022. a, b
Murray, L., Nguyen, H., Lee, Y.-F., Remmenga, M. D., and Smith, D. W.: Variance inflation factors in regression models with dummy variables, Kansas State University, https://doi.org/10.4148/2475-7772.1034, 2012. a
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S., Wilmking, M., Hallinger, M., Blok, D., Tape, K. D., Rayback, S. A., Macias-Fauria, M., and Forbes, B. C.: Climate sensitivity of shrub growth across the tundra biome, Nat. Clim. Change, 5, 887–891, 2015. a
Nagelmüller, S., Hiltbrunner, E., and Körner, C.: Low temperature limits for root growth in alpine species are set by cell differentiation, AoB Plants, 9, plx054, https://doi.org/10.1093/aobpla/plx054, 2017. a
Nicod, C. and Gillet, F.: Recent changes in mountain hay meadows of high conservation value in eastern France, Appl. Veg. Sci., 24, e12573, https://doi.org/10.1111/avsc.12573, 2021. a
Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., and Valladares, F.: Plant phenotypic plasticity in a changing climate, Trends Plant Sci., 15, 684–692, 2010. a
Noilhan, J. and Mahfouf, J.-F.: The ISBA land surface parameterisation scheme, Global Planet. Change, 13, 145–159, 1996. a
Opedal, Ø. H., Armbruster, W. S., and Graae, B. J.: Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape, Plant Ecol. Divers., 8, 305–315, 2015. a
Pardee, G. L., Inouye, D. W., and Irwin, R. E.: Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers, Glob. Change Biol., 24, 848–857, 2018. a
Pepin, N., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., and Schöner, W.: Climate changes and their elevational patterns in the mountains of the world, Rev. Geophys., 60, e2020RG000730, https://doi.org/10.1029/2020RG000730, 2022. a
Piao, S., Mohammat, A., Fang, J., Cai, Q., and Feng, J.: NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China, Global Environ. Change, 16, 340–348, 2006. a
Pinheiro, J. C. and Bates, D. M.: Linear mixed-effects models: basic concepts and examples, Mixed-effects models in S and S-Plus, 3–56, 2000.
Plantureux, S., Peeters, A., and McCracken, D.: Biodiversity in intensive grasslands: Effect of management, improvement and challenges, Agron. Res., 3, 153–164, 2005. a
Revuelto, J., Billecocq, P., Tuzet, F., Cluzet, B., Lamare, M., Larue, F., and Dumont, M.: Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas, Hydrol. Process., 34, 5384–5401, 2020. a
Revuelto, J., Gómez, D., Alonso-González, E., Vidaller, I., Rojas-Heredia, F., Deschamps-Berger, C., García-Jiménez, J., Rodríguez-López, G., Sobrino, J., and Montorio, R.: Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees, Sci. Rep., 12, 18328, https://doi.org/10.1038/s41598-022-22391-x, 2022. a, b, c, d
Rigal, S., Devictor, V., and Dakos, V.: A method for classifying and comparing non-linear trajectories of ecological variables, Ecol. Indic., 112, 106113, https://doi.org/10.1016/j.ecolind.2020.106113, 2020. a
Ropars, P. and Boudreau, S.: Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography, Environ. Res. Lett., 7, 015501, https://doi.org/10.1088/1748-9326/7/1/015501, 2012. a
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS using the normalized difference snow index, Remote Sens. Environ., 89, 351–360, 2004.
Scherrer, D. and Koerner, C.: Infra-red thermometry of alpine landscapes challenges climatic warming projections, Glob. Change Biol., 16, 2602–2613, 2010. a
Schönbein, J. and Schneider, C.: Snow cover variability in the Black Forest region as an example of a German low mountain range under the influence of climate change, in: EGS-AGU-EUG Joint Assembly, 5993, 2003. a
Siebenkäs, A., Schumacher, J., and Roscher, C.: Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species, AoB Plants, 7, plv029, https://doi.org/10.1093/aobpla/plv029, 2015. a
Soubeyroux, J.-M., Martin, E., Franchisteguy, L., Habets, F., Noilhan, J., Baillon, M., Regimbeau, F., Vidal, J.-P., Le Moigne, P., and Morel, S.: Safran-Isba-Modcou (SIM): Un outil pour le suivi hydrométéorologique opérationnel et les études, La Météorologie, 40–45, 2008. a
Starr, G. and Oberbauer, S. F.: Photosynthesis of arctic evergreens under snow: implications for tundra ecosystem carbon balance, Ecology, 84, 1415–1420, 2003. a
Stevens, C. J., Lind, E. M., Hautier, Y., Harpole, W. S., Borer, E. T., Hobbie, S., Seabloom, E. W., Ladwig, L., Bakker, J. D., and Chu, C.: Anthropogenic nitrogen deposition predicts local grassland primary production worldwide, Ecology, 96, 1459–1465, 2015. a
Tomaszewska, M. A., Nguyen, L. H., and Henebry, G. M.: Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics, Remote Sens. Environ., 240, 111675, https://doi.org/10.1016/j.rse.2020.111675, 2020. a, b, c, d
Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L., Réveillet, M., Dombrowski-Etchevers, I., Thibert, E., and Vincent, C.: Sub-kilometer precipitation datasets for snowpack and glacier modeling in Alpine terrain, Front. Earth Sci., 7, 182, https://doi.org/10.3389/feart.2019.00182, 2019. a
Wahl, L., Planchon, O., and David, P.-M.: Névés, corniches et risque d’avalanche dans les Hautes-Vosges, En hommage à Laurent Wahl, décédé le 18 décembre 2008, Revue Géographique de l'Est, 47, https://doi.org/10.4000/rge.1533, 2007. a
Wang, H., Liu, H., Cao, G., Ma, Z., Li, Y., Zhang, F., Zhao, X., Zhao, X., Jiang, L., and Sanders, N. J.: Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change, Ecol. Lett., 23, 701–710, 2020. a
Welker, J., Fahnestock, J., Sullivan, P., and Chimner, R.: Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska, Oikos, 109, 167–177, 2005. a
Winkler, D. E., Lin, M. Y.-C., Delgadillo, J., Chapin, K. J., and Huxman, T. E.: Early life history responses and phenotypic shifts in a rare endemic plant responding to climate change, Conserv. Physiol., 7, coz076, https://doi.org/10.1093/conphys/coz076, 2019. a
Wipf, S., Stoeckli, V., and Bebi, P.: Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing, Clim. Change, 94, 105–121, 2009. a
Yang, J., Dong, J., Xiao, X., Dai, J., Wu, C., Xia, J., Zhao, G., Zhao, M., Li, Z., and Zhang, Y.: Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China, Remote Sens. Environ., 233, 111395, https://doi.org/10.1016/j.rse.2019.111395, 2019. a
Zeeman, M., Mauder, M., Steinbrecher, R., Heidbach, K., Eckart, E., and Schmid, H.: Reduced snow cover affects productivity of upland temperate grasslands, Agr. Forest Meteorol., 232, 514–526, 2017. a
Zhu, L., Radeloff, V. C., and Ives, A. R.: Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products, Remote Sens. Environ., 191, 168–178, 2017. a
Short summary
Mountain grasslands are impacted by climate change and need to adapt. Low-mountain grasslands are poorly understood compared to high-mountain massifs. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, with a reverse signal observed in high-mountain massifs. We also noted a high responsiveness in their growth strategy to soil moisture, snow regime, and topography.
Mountain grasslands are impacted by climate change and need to adapt. Low-mountain grasslands...
Altmetrics
Final-revised paper
Preprint