Articles | Volume 22, issue 3
https://doi.org/10.5194/bg-22-785-2025
https://doi.org/10.5194/bg-22-785-2025
Research article
 | 
12 Feb 2025
Research article |  | 12 Feb 2025

An elucidatory model of oxygen's partial pressure inside substomatal cavities

Andrew S. Kowalski

Related authors

Comment on "Technical note: An assessment of the relative contribution of the Soret effect to open water evaporation" by Roderick and Shakespeare (2025)
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-2814,https://doi.org/10.5194/egusphere-2025-2814, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Water vapour dynamics as a key determinant of atmospheric composition and transport mechanisms
Andrew S. Kowalski, Ivan A. Janssens, and Óscar Pérez-Priego
EGUsphere, https://doi.org/10.5194/egusphere-2025-2695,https://doi.org/10.5194/egusphere-2025-2695, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025,https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024,https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary

Cited articles

Aparecido, L. M. T., Woo, S., Suazo, C., Hultine, K. R., and Blonder, B.: High water use in desert plants exposed to extreme heat, Ecol. Lett., 23, 1189–1200, https://doi.org/10.1111/ele.13516, 2020. 
De Kauwe, M. G., Medlyn, B. E., Pitman, A. J., Drake, J. E., Ukkola, A., Griebel, A., Pendall, E., Prober, S., and Roderick, M.: Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes, Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, 2019. 
Diao, H., Cernusak, L. A., Saurer, M., Gessler, A., Siegwolf, R. T. W., and Lehmann, M. M.: Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques, New Phytol., 241, 2366–2378, https://doi.org/10.1111/nph.19558, 2024. 
Giancoli D. C.: General Physics, Prentice-Hall, Englewood Cliffs, 892 pp., ISBN 0-13-350884-6, 1984. 
IPCC: Climate change 2021 – the physical science basis, Cambridge University Press, 43, 22–23, https://doi.org/10.1017/9781009157896, 2021. 
Download
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges because non-diffusive transport is required. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Share
Altmetrics
Final-revised paper
Preprint