Articles | Volume 5, issue 2
https://doi.org/10.5194/bg-5-485-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-5-485-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Coccolithophores and calcite saturation state in the Baltic and Black Seas
T. Tyrrell
National Oceanography Centre, Southampton University, European Way, Southampton SO14 3ZH, UK
B. Schneider
Institut für Ostseeforschung Warnemünde, Seestrasse 15, 18119 Rostock, Germany
A. Charalampopoulou
National Oceanography Centre, Southampton University, European Way, Southampton SO14 3ZH, UK
U. Riebesell
Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Duesternbrooker Weg 20, 24105 Kiel, Germany
Viewed
Total article views: 3,653 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 10 Oct 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,655 | 1,869 | 129 | 3,653 | 144 | 112 |
- HTML: 1,655
- PDF: 1,869
- XML: 129
- Total: 3,653
- BibTeX: 144
- EndNote: 112
Total article views: 3,013 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 01 Apr 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,398 | 1,507 | 108 | 3,013 | 119 | 108 |
- HTML: 1,398
- PDF: 1,507
- XML: 108
- Total: 3,013
- BibTeX: 119
- EndNote: 108
Total article views: 640 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 10 Oct 2007)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
257 | 362 | 21 | 640 | 25 | 4 |
- HTML: 257
- PDF: 362
- XML: 21
- Total: 640
- BibTeX: 25
- EndNote: 4
Cited
81 citations as recorded by crossref.
- Tropical cyclones cause CaCO3undersaturation of coral reef seawater in a high-CO2world D. Manzello et al. 10.1002/jgrc.20378
- Mineralogical and geochemical composition of CaCO3 skeletons secreted by benthic invertebrates from the brackish Baltic Sea A. Piwoni-Piórewicz et al. 10.1016/j.ecss.2022.107808
- TESTING THE EFFECTS OF ELEVATED PCO2 ON COCCOLITHOPHORES (PRYMNESIOPHYCEAE): COMPARISON BETWEEN HAPLOID AND DIPLOID LIFE STAGES1 S. Fiorini et al. 10.1111/j.1529-8817.2011.01080.x
- Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements J. Müller et al. 10.5194/bg-18-4889-2021
- Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry? A. Oviedo et al. 10.5194/os-11-13-2015
- Landfast sea ice in the Bothnian Bay (Baltic Sea) as a temporary storage compartment for greenhouse gases N. Geilfus et al. 10.1525/elementa.2021.00028
- Coccolithophore community response to ocean acidification and warming in the Eastern Mediterranean Sea: results from a mesocosm experiment B. D’Amario et al. 10.1038/s41598-020-69519-5
- Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study**The German section of the Baltic Monitoring Programme (COMBINE) in the Baltic Sea is conducted by the IOW on behalf of the Bundesamt für Seeschifffahrt und Hydrographie (BSH), financed by the Bundesministerium für Verkehr, Bau- und Wohnungswesen (BMCBW). This work was funded by DFG grant: NE G17/3-1 and the European Community’s Seventh Framework Programme (FP/2007–2013) under grant agreement 217246 made with the joint Baltic Sea research and development programme BONUS (ECOSUPPORT). I. Kuznetsov et al. 10.5697/oc.53-3.745
- Taphonomic bias on calcareous micro and nannofossils and paleoenvironmental evolution across the Messinian Salinity Crisis onset: Insights from the Sorbas Basin (SE Spain) A. Mancini et al. 10.1016/j.palaeo.2022.111056
- Impacts of changing climate on the non-indigenous invertebrates in the northern Baltic Sea by end of the twenty-first century R. Holopainen et al. 10.1007/s10530-016-1197-z
- High Calcification Costs Limit Mussel Growth at Low Salinity T. Sanders et al. 10.3389/fmars.2018.00352
- Calcite production by coccolithophores in the south east Pacific Ocean L. Beaufort et al. 10.5194/bg-5-1101-2008
- Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves M. Chierici & A. Fransson 10.5194/bg-6-2421-2009
- Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels T. Sanders et al. 10.5194/bg-18-2573-2021
- A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data B. Schneider et al. 10.1016/j.csr.2009.04.001
- Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change L. Telesca et al. 10.1111/gcb.14758
- Kinetics of Olivine Weathering in Seawater: An Experimental Study M. Fuhr et al. 10.3389/fclim.2022.831587
- Lower Salinity Leads to Improved Physiological Performance in the Coccolithophorid Emiliania huxleyi, Which Partly Ameliorates the Effects of Ocean Acidification J. Xu et al. 10.3389/fmars.2020.00704
- Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition F. Figueroa et al. 10.3354/ab00610
- Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea Y. Hu et al. 10.3389/fmicb.2016.00679
- Coccolithophores and diatoms resilient to ocean alkalinity enhancement: A glimpse of hope? J. Gately et al. 10.1126/sciadv.adg6066
- Seasonal Dynamics of Amorphous Silica in Vantaa River Estuary M. Lehtimäki et al. 10.1007/s12633-012-9126-y
- Deciphering shell proteome within different Baltic populations of mytilid mussels illustrates important local variability and potential consequences in the context of changing marine conditions J. Arivalagan et al. 10.1016/j.scitotenv.2020.140878
- Mesocosm CO<sub>2</sub> perturbation studies: from organism to community level U. Riebesell et al. 10.5194/bg-5-1157-2008
- Alkenone δ2H values – a viable seawater isotope proxy? New core-top δ2HC37:3 and δ2HC37:2 data suggest inter-alkenone and alkenone-water hydrogen isotope fractionation are independent of temperature and salinity B. Mitsunaga et al. 10.1016/j.gca.2022.10.024
- Modelling ocean acidification in the Nordic and Barents Seas in present and future climate M. Skogen et al. 10.1016/j.jmarsys.2013.10.005
- Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea S. Shetye et al. 10.1007/s11356-023-25249-5
- An Extracellular Polysaccharide-Rich Organic Layer Contributes to Organization of the Coccosphere in Coccolithophores C. Walker et al. 10.3389/fmars.2018.00306
- Remote sensing algorithms for particulate inorganic carbon (PIC) and the global cycle of PIC W. Balch & C. Mitchell 10.1016/j.earscirev.2023.104363
- The characteristics of the CO2 system of the Oder River estuary (Baltic Sea) M. Stokowski et al. 10.1016/j.jmarsys.2020.103418
- Effect of Carbon Dioxide-Induced Water Acidification on the Physiological Processes of the Baltic Isopod Saduria entomon 10.2983/035.032.0326
- Cultivation of Emiliania huxleyi for coccolith production I. Jakob et al. 10.1016/j.algal.2018.01.013
- Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2 V. Saderne et al. 10.1371/journal.pone.0070455
- Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments G. Weiss et al. 10.1016/j.gca.2019.01.038
- CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems L. Bach et al. 10.3389/fclim.2019.00007
- Organic matter mineralization in the deep water of the Gotland Basin (Baltic Sea): Rates and oxidant demand B. Schneider & S. Otto 10.1016/j.jmarsys.2019.03.006
- Human impacts and their interactions in the Baltic Sea region M. Reckermann et al. 10.5194/esd-13-1-2022
- Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments M. Lebrato et al. 10.1890/09-0553.1
- Coccolithophore diversity and dynamics at a coastal site in the Gulf of Trieste (northern Adriatic Sea) F. Cerino et al. 10.1016/j.ecss.2017.07.013
- The CO2 system dynamics in the vicinity of the Vistula River mouth (the southern Baltic Sea): A baseline investigation M. Stokowski et al. 10.1016/j.ecss.2021.107444
- Distinct physiological responses ofCoccolithus braarudiilife cycle phases to light intensity and nutrient availability G. Langer et al. 10.1080/09670262.2022.2056925
- Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton E. Bendif et al. 10.1038/s41396-023-01365-5
- Seeking natural analogs to fast-forward the assessment of marine CO 2 removal L. Bach & P. Boyd 10.1073/pnas.2106147118
- The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea O. Schmale et al. 10.1002/lno.10640
- Morphology of <i>Emiliania huxleyi</i> coccoliths on the northwestern European shelf – is there an influence of carbonate chemistry? J. Young et al. 10.5194/bg-11-4771-2014
- Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach J. Prüter et al. 10.1007/s11368-019-02518-w
- Environmental controls on coccolithophore calcification J. Raven & K. Crawfurd 10.3354/meps09993
- Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis L. Hofmann et al. 10.1093/jxb/ers369
- Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean C. Dumousseaud et al. 10.5194/bg-7-1481-2010
- Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO 2 B. McNeil & R. Matear 10.1073/pnas.0806318105
- Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico L. Pettit et al. 10.1016/j.marpolbul.2013.02.011
- Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans N. Chauhan et al. 10.1016/j.marpolbul.2024.117136
- Rising Atmospheric Carbon Dioxide Could Doom Ocean Corals and Shellfish: Simple Thermodynamic Calculations Show Why T. Silverstein 10.1021/acs.jchemed.2c00149
- Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers A. Almén et al. 10.1007/s10661-017-5840-7
- Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution F. Figueroa et al. 10.1093/jxb/eraa473
- Temporal and Spatial Variability of the CO2 System in a Riverine Influenced Area of the Mediterranean Sea, the Northern Adriatic L. Urbini et al. 10.3389/fmars.2020.00679
- The benthic-pelagic coupling affects the surface water carbonate system above groundwater-charged coastal sediments B. Szymczycha et al. 10.3389/fmars.2023.1218245
- Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea J. Beldowski et al. 10.1016/j.jmarsys.2009.12.020
- From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification A. Ridgwell et al. 10.5194/bg-6-2611-2009
- Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective J. Blackford 10.1016/j.jmarsys.2009.12.016
- Structure and functioning of the acid–base system in the Baltic Sea K. Kuliński et al. 10.5194/esd-8-1107-2017
- Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea E. Gustafsson et al. 10.5194/bg-16-437-2019
- How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups J. Havenhand 10.1007/s13280-012-0326-x
- Biogeochemical Control of the Coupled CO2–O2 System of the Baltic Sea: A Review of the Results of Baltic-C A. Omstedt et al. 10.1007/s13280-013-0485-4
- Increase in marginal sea alkalinity may impact air–sea carbon dioxide exchange and buffer acidification L. Cotovicz et al. 10.1002/lno.12672
- Polymorphism ofCaCO3and the variability of elemental composition of the calcareous skeletons secreted by invertebrates along the salinity gradient of the Baltic Sea A. Piwoni‐Piórewicz et al. 10.1111/gbi.12496
- A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework L. Bach et al. 10.1016/j.pocean.2015.04.012
- Simulation of carbon dynamics in the Baltic Sea with a 3D model I. Kuznetsov & T. Neumann 10.1016/j.jmarsys.2012.10.011
- Long-term alkalinity trends in the Baltic Sea and their implications for CO2 -induced acidification J. Müller et al. 10.1002/lno.10349
- Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water B. Schneider et al. 10.1016/j.marchem.2010.02.004
- Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: An approach based on pCO2 measurements on a cargo ship B. Schneider et al. 10.1016/j.jmarsys.2014.03.007
- Erosion of carbonate-bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and support atmospheric CO2 uptake in coastal seas K. Wallmann et al. 10.3389/fmars.2022.968069
- External total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea E. Gustafsson et al. 10.1002/2014GB004888
- The diurnal cycle of <i>p</i>CO<sub>2</sub> in the coastal region of the Baltic Sea M. Honkanen et al. 10.5194/os-17-1657-2021
- Biogeochemical functioning of the Baltic Sea K. Kuliński et al. 10.5194/esd-13-633-2022
- Long‐Term and Seasonal Trends in Estuarine and Coastal Carbonate Systems J. Carstensen et al. 10.1002/2017GB005781
- Global coccolithophore diversity: Drivers and future change C. O’Brien et al. 10.1016/j.pocean.2015.10.003
- pH and biogeochemical processes in the Gotland Basin of the Baltic Sea A. Ulfsbo et al. 10.1016/j.marchem.2011.07.004
- Factors influencing the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis A. Omstedt et al. 10.1111/j.1600-0889.2010.00463.x
- Ocean Acidification: The Newest Threat to the Global Environment T. Abbasi & S. Abbasi 10.1080/10643389.2010.481579
- Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring A. Piwoni-Piórewicz et al. 10.1007/s10661-017-5901-y
76 citations as recorded by crossref.
- Tropical cyclones cause CaCO3undersaturation of coral reef seawater in a high-CO2world D. Manzello et al. 10.1002/jgrc.20378
- Mineralogical and geochemical composition of CaCO3 skeletons secreted by benthic invertebrates from the brackish Baltic Sea A. Piwoni-Piórewicz et al. 10.1016/j.ecss.2022.107808
- TESTING THE EFFECTS OF ELEVATED PCO2 ON COCCOLITHOPHORES (PRYMNESIOPHYCEAE): COMPARISON BETWEEN HAPLOID AND DIPLOID LIFE STAGES1 S. Fiorini et al. 10.1111/j.1529-8817.2011.01080.x
- Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements J. Müller et al. 10.5194/bg-18-4889-2021
- Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry? A. Oviedo et al. 10.5194/os-11-13-2015
- Landfast sea ice in the Bothnian Bay (Baltic Sea) as a temporary storage compartment for greenhouse gases N. Geilfus et al. 10.1525/elementa.2021.00028
- Coccolithophore community response to ocean acidification and warming in the Eastern Mediterranean Sea: results from a mesocosm experiment B. D’Amario et al. 10.1038/s41598-020-69519-5
- Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study**The German section of the Baltic Monitoring Programme (COMBINE) in the Baltic Sea is conducted by the IOW on behalf of the Bundesamt für Seeschifffahrt und Hydrographie (BSH), financed by the Bundesministerium für Verkehr, Bau- und Wohnungswesen (BMCBW). This work was funded by DFG grant: NE G17/3-1 and the European Community’s Seventh Framework Programme (FP/2007–2013) under grant agreement 217246 made with the joint Baltic Sea research and development programme BONUS (ECOSUPPORT). I. Kuznetsov et al. 10.5697/oc.53-3.745
- Taphonomic bias on calcareous micro and nannofossils and paleoenvironmental evolution across the Messinian Salinity Crisis onset: Insights from the Sorbas Basin (SE Spain) A. Mancini et al. 10.1016/j.palaeo.2022.111056
- Impacts of changing climate on the non-indigenous invertebrates in the northern Baltic Sea by end of the twenty-first century R. Holopainen et al. 10.1007/s10530-016-1197-z
- High Calcification Costs Limit Mussel Growth at Low Salinity T. Sanders et al. 10.3389/fmars.2018.00352
- Calcite production by coccolithophores in the south east Pacific Ocean L. Beaufort et al. 10.5194/bg-5-1101-2008
- Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves M. Chierici & A. Fransson 10.5194/bg-6-2421-2009
- Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels T. Sanders et al. 10.5194/bg-18-2573-2021
- A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data B. Schneider et al. 10.1016/j.csr.2009.04.001
- Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change L. Telesca et al. 10.1111/gcb.14758
- Kinetics of Olivine Weathering in Seawater: An Experimental Study M. Fuhr et al. 10.3389/fclim.2022.831587
- Lower Salinity Leads to Improved Physiological Performance in the Coccolithophorid Emiliania huxleyi, Which Partly Ameliorates the Effects of Ocean Acidification J. Xu et al. 10.3389/fmars.2020.00704
- Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition F. Figueroa et al. 10.3354/ab00610
- Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea Y. Hu et al. 10.3389/fmicb.2016.00679
- Coccolithophores and diatoms resilient to ocean alkalinity enhancement: A glimpse of hope? J. Gately et al. 10.1126/sciadv.adg6066
- Seasonal Dynamics of Amorphous Silica in Vantaa River Estuary M. Lehtimäki et al. 10.1007/s12633-012-9126-y
- Deciphering shell proteome within different Baltic populations of mytilid mussels illustrates important local variability and potential consequences in the context of changing marine conditions J. Arivalagan et al. 10.1016/j.scitotenv.2020.140878
- Mesocosm CO<sub>2</sub> perturbation studies: from organism to community level U. Riebesell et al. 10.5194/bg-5-1157-2008
- Alkenone δ2H values – a viable seawater isotope proxy? New core-top δ2HC37:3 and δ2HC37:2 data suggest inter-alkenone and alkenone-water hydrogen isotope fractionation are independent of temperature and salinity B. Mitsunaga et al. 10.1016/j.gca.2022.10.024
- Modelling ocean acidification in the Nordic and Barents Seas in present and future climate M. Skogen et al. 10.1016/j.jmarsys.2013.10.005
- Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea S. Shetye et al. 10.1007/s11356-023-25249-5
- An Extracellular Polysaccharide-Rich Organic Layer Contributes to Organization of the Coccosphere in Coccolithophores C. Walker et al. 10.3389/fmars.2018.00306
- Remote sensing algorithms for particulate inorganic carbon (PIC) and the global cycle of PIC W. Balch & C. Mitchell 10.1016/j.earscirev.2023.104363
- The characteristics of the CO2 system of the Oder River estuary (Baltic Sea) M. Stokowski et al. 10.1016/j.jmarsys.2020.103418
- Effect of Carbon Dioxide-Induced Water Acidification on the Physiological Processes of the Baltic Isopod Saduria entomon 10.2983/035.032.0326
- Cultivation of Emiliania huxleyi for coccolith production I. Jakob et al. 10.1016/j.algal.2018.01.013
- Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2 V. Saderne et al. 10.1371/journal.pone.0070455
- Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments G. Weiss et al. 10.1016/j.gca.2019.01.038
- CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems L. Bach et al. 10.3389/fclim.2019.00007
- Organic matter mineralization in the deep water of the Gotland Basin (Baltic Sea): Rates and oxidant demand B. Schneider & S. Otto 10.1016/j.jmarsys.2019.03.006
- Human impacts and their interactions in the Baltic Sea region M. Reckermann et al. 10.5194/esd-13-1-2022
- Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments M. Lebrato et al. 10.1890/09-0553.1
- Coccolithophore diversity and dynamics at a coastal site in the Gulf of Trieste (northern Adriatic Sea) F. Cerino et al. 10.1016/j.ecss.2017.07.013
- The CO2 system dynamics in the vicinity of the Vistula River mouth (the southern Baltic Sea): A baseline investigation M. Stokowski et al. 10.1016/j.ecss.2021.107444
- Distinct physiological responses ofCoccolithus braarudiilife cycle phases to light intensity and nutrient availability G. Langer et al. 10.1080/09670262.2022.2056925
- Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton E. Bendif et al. 10.1038/s41396-023-01365-5
- Seeking natural analogs to fast-forward the assessment of marine CO 2 removal L. Bach & P. Boyd 10.1073/pnas.2106147118
- The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea O. Schmale et al. 10.1002/lno.10640
- Morphology of <i>Emiliania huxleyi</i> coccoliths on the northwestern European shelf – is there an influence of carbonate chemistry? J. Young et al. 10.5194/bg-11-4771-2014
- Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach J. Prüter et al. 10.1007/s11368-019-02518-w
- Environmental controls on coccolithophore calcification J. Raven & K. Crawfurd 10.3354/meps09993
- Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis L. Hofmann et al. 10.1093/jxb/ers369
- Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean C. Dumousseaud et al. 10.5194/bg-7-1481-2010
- Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO 2 B. McNeil & R. Matear 10.1073/pnas.0806318105
- Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico L. Pettit et al. 10.1016/j.marpolbul.2013.02.011
- Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans N. Chauhan et al. 10.1016/j.marpolbul.2024.117136
- Rising Atmospheric Carbon Dioxide Could Doom Ocean Corals and Shellfish: Simple Thermodynamic Calculations Show Why T. Silverstein 10.1021/acs.jchemed.2c00149
- Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers A. Almén et al. 10.1007/s10661-017-5840-7
- Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution F. Figueroa et al. 10.1093/jxb/eraa473
- Temporal and Spatial Variability of the CO2 System in a Riverine Influenced Area of the Mediterranean Sea, the Northern Adriatic L. Urbini et al. 10.3389/fmars.2020.00679
- The benthic-pelagic coupling affects the surface water carbonate system above groundwater-charged coastal sediments B. Szymczycha et al. 10.3389/fmars.2023.1218245
- Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea J. Beldowski et al. 10.1016/j.jmarsys.2009.12.020
- From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification A. Ridgwell et al. 10.5194/bg-6-2611-2009
- Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective J. Blackford 10.1016/j.jmarsys.2009.12.016
- Structure and functioning of the acid–base system in the Baltic Sea K. Kuliński et al. 10.5194/esd-8-1107-2017
- Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea E. Gustafsson et al. 10.5194/bg-16-437-2019
- How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups J. Havenhand 10.1007/s13280-012-0326-x
- Biogeochemical Control of the Coupled CO2–O2 System of the Baltic Sea: A Review of the Results of Baltic-C A. Omstedt et al. 10.1007/s13280-013-0485-4
- Increase in marginal sea alkalinity may impact air–sea carbon dioxide exchange and buffer acidification L. Cotovicz et al. 10.1002/lno.12672
- Polymorphism ofCaCO3and the variability of elemental composition of the calcareous skeletons secreted by invertebrates along the salinity gradient of the Baltic Sea A. Piwoni‐Piórewicz et al. 10.1111/gbi.12496
- A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework L. Bach et al. 10.1016/j.pocean.2015.04.012
- Simulation of carbon dynamics in the Baltic Sea with a 3D model I. Kuznetsov & T. Neumann 10.1016/j.jmarsys.2012.10.011
- Long-term alkalinity trends in the Baltic Sea and their implications for CO2 -induced acidification J. Müller et al. 10.1002/lno.10349
- Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water B. Schneider et al. 10.1016/j.marchem.2010.02.004
- Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: An approach based on pCO2 measurements on a cargo ship B. Schneider et al. 10.1016/j.jmarsys.2014.03.007
- Erosion of carbonate-bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and support atmospheric CO2 uptake in coastal seas K. Wallmann et al. 10.3389/fmars.2022.968069
- External total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea E. Gustafsson et al. 10.1002/2014GB004888
- The diurnal cycle of <i>p</i>CO<sub>2</sub> in the coastal region of the Baltic Sea M. Honkanen et al. 10.5194/os-17-1657-2021
- Biogeochemical functioning of the Baltic Sea K. Kuliński et al. 10.5194/esd-13-633-2022
- Long‐Term and Seasonal Trends in Estuarine and Coastal Carbonate Systems J. Carstensen et al. 10.1002/2017GB005781
5 citations as recorded by crossref.
- Global coccolithophore diversity: Drivers and future change C. O’Brien et al. 10.1016/j.pocean.2015.10.003
- pH and biogeochemical processes in the Gotland Basin of the Baltic Sea A. Ulfsbo et al. 10.1016/j.marchem.2011.07.004
- Factors influencing the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis A. Omstedt et al. 10.1111/j.1600-0889.2010.00463.x
- Ocean Acidification: The Newest Threat to the Global Environment T. Abbasi & S. Abbasi 10.1080/10643389.2010.481579
- Size effect on the mineralogy and chemistry of Mytilus trossulus shells from the southern Baltic Sea: implications for environmental monitoring A. Piwoni-Piórewicz et al. 10.1007/s10661-017-5901-y
Saved (preprint)
Latest update: 23 Nov 2024
Altmetrics
Final-revised paper
Preprint