Articles | Volume 6, issue 9
https://doi.org/10.5194/bg-6-1865-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-6-1865-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena
J. Czerny
Leibniz Institute of Marine Science, IFM-GEOMAR, Duesternbrooker Weg 20, Kiel, Germany
J. Barcelos e Ramos
Leibniz Institute of Marine Science, IFM-GEOMAR, Duesternbrooker Weg 20, Kiel, Germany
U. Riebesell
Leibniz Institute of Marine Science, IFM-GEOMAR, Duesternbrooker Weg 20, Kiel, Germany
Viewed
Total article views: 3,578 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 17 Apr 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,695 | 1,718 | 165 | 3,578 | 162 | 120 |
- HTML: 1,695
- PDF: 1,718
- XML: 165
- Total: 3,578
- BibTeX: 162
- EndNote: 120
Total article views: 2,821 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 04 Sep 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,404 | 1,277 | 140 | 2,821 | 132 | 115 |
- HTML: 1,404
- PDF: 1,277
- XML: 140
- Total: 2,821
- BibTeX: 132
- EndNote: 115
Total article views: 757 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 17 Apr 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
291 | 441 | 25 | 757 | 30 | 5 |
- HTML: 291
- PDF: 441
- XML: 25
- Total: 757
- BibTeX: 30
- EndNote: 5
Cited
54 citations as recorded by crossref.
- Elevated co2 has Differential Effects on Five Species of Microalgae from a Subtropical Freshwater Lake: Possible Implications for Phytoplankton Species Composition T. Lines et al. 10.1111/jpy.13104
- Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre D. Böttjer et al. 10.1002/2013GB004690
- Climate change and regulation of hepatotoxin production in Cyanobacteria M. Gehringer & N. Wannicke 10.1111/1574-6941.12291
- Interaction effects of zooplankton and CO2 on phytoplankton communities and the deep chlorophyll maximum C. Paquette & B. Beisner 10.1111/fwb.13063
- Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea A. Rees et al. 10.1016/j.ecss.2016.01.020
- Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis S. Xie et al. 10.1130/G30769.1
- Effects of Ocean Acidification on Marine Photosynthetic Organisms Under the Concurrent Influences of Warming, UV Radiation, and Deoxygenation K. Gao et al. 10.3389/fmars.2019.00322
- Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production T. Hama et al. 10.1007/s10872-011-0084-6
- Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix N. Rädecker et al. 10.3354/meps10912
- Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts T. Wertin et al. 10.1007/s00374-012-0673-6
- Response of <i>Nodularia spumigena</i> to <i>p</i>CO<sub>2</sub> – Part 3: Turnover of phosphorus compounds J. Unger et al. 10.5194/bg-10-1483-2013
- Diversity of ocean acidification effects on marine N2 fixers M. Eichner et al. 10.1016/j.jembe.2014.04.015
- No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community A. Paul et al. 10.5194/bg-13-3901-2016
- Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective H. Kim et al. 10.1016/j.eiar.2015.11.004
- Response of <i>Nodularia spumigena</i> to <i>p</i>CO<sub>2</sub> – Part 2: Exudation and extracellular enzyme activities S. Endres et al. 10.5194/bg-10-567-2013
- Increased incidence of Cylindrospermopsis raciborskii in temperate zones – Is climate change responsible? R. Sinha et al. 10.1016/j.watres.2011.12.019
- Cell‐specific nitrogen‐ and carbon‐fixation of cyanobacteria in a temperate marine system (Baltic Sea) I. Klawonn et al. 10.1111/1462-2920.13557
- Emerging patterns of marine nitrogen fixation J. Sohm et al. 10.1038/nrmicro2594
- Biological impacts of ocean acidification: a postgraduate perspective on research priorities S. Garrard et al. 10.1007/s00227-012-2033-3
- Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis S. Xie & Y. Wang 10.1007/s11707-011-0162-5
- Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China W. Liu & M. He 10.1007/s00343-012-1067-1
- Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient J. Taylor et al. 10.1111/1574-6941.12368
- Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton K. Gao et al. 10.1007/s10811-017-1329-6
- Effects of CO<sub>2</sub> perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea M. Nausch et al. 10.5194/bg-13-3035-2016
- Baltic Sea diazotrophic cyanobacterium is negatively affected by acidification and warming A. Paul et al. 10.3354/meps12632
- Response of <i>Nodularia spumigena</i> to <i>p</i>CO<sub>2</sub> – Part 1: Growth, production and nitrogen cycling N. Wannicke et al. 10.5194/bg-9-2973-2012
- How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups J. Havenhand 10.1007/s13280-012-0326-x
- Effects of increased CO2 concentration on nutrient limited coastal summer plankton depend on temperature C. Paul et al. 10.1002/lno.10256
- The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change J. O’Neil et al. 10.1016/j.hal.2011.10.027
- How rising CO2 and global warming may stimulate harmful cyanobacterial blooms P. Visser et al. 10.1016/j.hal.2015.12.006
- Nitrogen Sources and Iron Availability Affect Pigment Biosynthesis and Nutrient Consumption in Anabaena sp. UTEX 2576 D. Norena-Caro et al. 10.3390/microorganisms9020431
- Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord M. Sperling et al. 10.5194/bg-10-181-2013
- No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO2 in the South Pacific C. Law et al. 10.1111/j.1365-2486.2012.02777.x
- The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period H. Biswas et al. 10.1016/j.jembe.2011.06.027
- Modeling the Role of pH on Baltic Sea Cyanobacteria J. Hinners et al. 10.3390/life5021204
- Global biogeochemical impacts of phytoplankton: a trait‐based perspective E. Litchman et al. 10.1111/1365-2745.12438
- Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: A review J. Ma & P. Wang 10.1016/j.scitotenv.2020.141889
- Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic M. Lomas et al. 10.3354/ame01576
- Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long‐term elevated CO2 B. Steven et al. 10.1111/1462-2920.12011
- Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System J. Havenhand et al. 10.1007/s13280-018-1110-3
- Effect of ocean acidification on marine phytoplankton and biogeochemical cycles K. Sugie & T. Yoshimura 10.5928/kaiyou.20.5_101
- Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems S. Kazmi et al. 10.3390/biology11060852
- Growth, toxicity and oxidative stress of a cultured cyanobacterium (Dolichospermum sp.) under different CO2/pH and temperature conditions A. Brutemark et al. 10.1111/pre.12075
- Atmospheric CO2 availability induces varying responses in net photosynthesis, toxin production and N2 fixation rates in heterocystous filamentous Cyanobacteria (Nostoc and Nodularia) N. Wannicke et al. 10.1007/s00027-021-00788-6
- Microbial proliferation coinciding with volcanism during the Permian–Triassic transition: New, direct evidence from volcanic ashes, South China Q. Fang et al. 10.1016/j.palaeo.2016.06.026
- Nitrogen inputs and losses in response to chronic CO<sub>2</sub> exposure in a subtropical oak woodland B. Hungate et al. 10.5194/bg-11-3323-2014
- Ocean acidification and marine microorganisms: responses and consequences S. Das & N. Mangwani 10.1016/j.oceano.2015.07.003
- Harvesting of Nodularia spumigena in the Baltic Sea: Assessment of Potentials and Added Benefits J. Pechsiri et al. 10.2112/JCOASTRES-D-13-00119.1
- Analysis of Environmental Factors Associated with Cyanobacterial Dominance after River Weir Installation S. Kim et al. 10.3390/w11061163
- Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions Z. Lindo & D. Griffith 10.3390/f8030073
- The response of the marine nitrogen cycle to ocean acidification N. Wannicke et al. 10.1111/gcb.14424
- The effect of pre-industrial and predicted atmospheric CO2 concentrations on the development of diazotrophic and non-diazotrophic cyanobacterium: Dolichospermum circinale and Microcystis aeruginosa E. Symes & F. van Ogtrop 10.1016/j.hal.2018.10.005
- Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities B. Clément‐Larosière et al. 10.1002/elsc.201200212
- Combined effects of carbon and phosphorus levels on the invasive cyanobacterium, Cylindrospermopsis raciborskii Z. Wu et al. 10.2216/10.87.1
52 citations as recorded by crossref.
- Elevated co2 has Differential Effects on Five Species of Microalgae from a Subtropical Freshwater Lake: Possible Implications for Phytoplankton Species Composition T. Lines et al. 10.1111/jpy.13104
- Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre D. Böttjer et al. 10.1002/2013GB004690
- Climate change and regulation of hepatotoxin production in Cyanobacteria M. Gehringer & N. Wannicke 10.1111/1574-6941.12291
- Interaction effects of zooplankton and CO2 on phytoplankton communities and the deep chlorophyll maximum C. Paquette & B. Beisner 10.1111/fwb.13063
- Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea A. Rees et al. 10.1016/j.ecss.2016.01.020
- Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis S. Xie et al. 10.1130/G30769.1
- Effects of Ocean Acidification on Marine Photosynthetic Organisms Under the Concurrent Influences of Warming, UV Radiation, and Deoxygenation K. Gao et al. 10.3389/fmars.2019.00322
- Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production T. Hama et al. 10.1007/s10872-011-0084-6
- Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix N. Rädecker et al. 10.3354/meps10912
- Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts T. Wertin et al. 10.1007/s00374-012-0673-6
- Response of <i>Nodularia spumigena</i> to <i>p</i>CO<sub>2</sub> – Part 3: Turnover of phosphorus compounds J. Unger et al. 10.5194/bg-10-1483-2013
- Diversity of ocean acidification effects on marine N2 fixers M. Eichner et al. 10.1016/j.jembe.2014.04.015
- No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community A. Paul et al. 10.5194/bg-13-3901-2016
- Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective H. Kim et al. 10.1016/j.eiar.2015.11.004
- Response of <i>Nodularia spumigena</i> to <i>p</i>CO<sub>2</sub> – Part 2: Exudation and extracellular enzyme activities S. Endres et al. 10.5194/bg-10-567-2013
- Increased incidence of Cylindrospermopsis raciborskii in temperate zones – Is climate change responsible? R. Sinha et al. 10.1016/j.watres.2011.12.019
- Cell‐specific nitrogen‐ and carbon‐fixation of cyanobacteria in a temperate marine system (Baltic Sea) I. Klawonn et al. 10.1111/1462-2920.13557
- Emerging patterns of marine nitrogen fixation J. Sohm et al. 10.1038/nrmicro2594
- Biological impacts of ocean acidification: a postgraduate perspective on research priorities S. Garrard et al. 10.1007/s00227-012-2033-3
- Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis S. Xie & Y. Wang 10.1007/s11707-011-0162-5
- Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China W. Liu & M. He 10.1007/s00343-012-1067-1
- Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient J. Taylor et al. 10.1111/1574-6941.12368
- Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton K. Gao et al. 10.1007/s10811-017-1329-6
- Effects of CO<sub>2</sub> perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea M. Nausch et al. 10.5194/bg-13-3035-2016
- Baltic Sea diazotrophic cyanobacterium is negatively affected by acidification and warming A. Paul et al. 10.3354/meps12632
- Response of <i>Nodularia spumigena</i> to <i>p</i>CO<sub>2</sub> – Part 1: Growth, production and nitrogen cycling N. Wannicke et al. 10.5194/bg-9-2973-2012
- How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups J. Havenhand 10.1007/s13280-012-0326-x
- Effects of increased CO2 concentration on nutrient limited coastal summer plankton depend on temperature C. Paul et al. 10.1002/lno.10256
- The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change J. O’Neil et al. 10.1016/j.hal.2011.10.027
- How rising CO2 and global warming may stimulate harmful cyanobacterial blooms P. Visser et al. 10.1016/j.hal.2015.12.006
- Nitrogen Sources and Iron Availability Affect Pigment Biosynthesis and Nutrient Consumption in Anabaena sp. UTEX 2576 D. Norena-Caro et al. 10.3390/microorganisms9020431
- Effect of elevated CO<sub>2</sub> on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord M. Sperling et al. 10.5194/bg-10-181-2013
- No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO2 in the South Pacific C. Law et al. 10.1111/j.1365-2486.2012.02777.x
- The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period H. Biswas et al. 10.1016/j.jembe.2011.06.027
- Modeling the Role of pH on Baltic Sea Cyanobacteria J. Hinners et al. 10.3390/life5021204
- Global biogeochemical impacts of phytoplankton: a trait‐based perspective E. Litchman et al. 10.1111/1365-2745.12438
- Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: A review J. Ma & P. Wang 10.1016/j.scitotenv.2020.141889
- Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic M. Lomas et al. 10.3354/ame01576
- Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long‐term elevated CO2 B. Steven et al. 10.1111/1462-2920.12011
- Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System J. Havenhand et al. 10.1007/s13280-018-1110-3
- Effect of ocean acidification on marine phytoplankton and biogeochemical cycles K. Sugie & T. Yoshimura 10.5928/kaiyou.20.5_101
- Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems S. Kazmi et al. 10.3390/biology11060852
- Growth, toxicity and oxidative stress of a cultured cyanobacterium (Dolichospermum sp.) under different CO2/pH and temperature conditions A. Brutemark et al. 10.1111/pre.12075
- Atmospheric CO2 availability induces varying responses in net photosynthesis, toxin production and N2 fixation rates in heterocystous filamentous Cyanobacteria (Nostoc and Nodularia) N. Wannicke et al. 10.1007/s00027-021-00788-6
- Microbial proliferation coinciding with volcanism during the Permian–Triassic transition: New, direct evidence from volcanic ashes, South China Q. Fang et al. 10.1016/j.palaeo.2016.06.026
- Nitrogen inputs and losses in response to chronic CO<sub>2</sub> exposure in a subtropical oak woodland B. Hungate et al. 10.5194/bg-11-3323-2014
- Ocean acidification and marine microorganisms: responses and consequences S. Das & N. Mangwani 10.1016/j.oceano.2015.07.003
- Harvesting of Nodularia spumigena in the Baltic Sea: Assessment of Potentials and Added Benefits J. Pechsiri et al. 10.2112/JCOASTRES-D-13-00119.1
- Analysis of Environmental Factors Associated with Cyanobacterial Dominance after River Weir Installation S. Kim et al. 10.3390/w11061163
- Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions Z. Lindo & D. Griffith 10.3390/f8030073
- The response of the marine nitrogen cycle to ocean acidification N. Wannicke et al. 10.1111/gcb.14424
- The effect of pre-industrial and predicted atmospheric CO2 concentrations on the development of diazotrophic and non-diazotrophic cyanobacterium: Dolichospermum circinale and Microcystis aeruginosa E. Symes & F. van Ogtrop 10.1016/j.hal.2018.10.005
2 citations as recorded by crossref.
Saved (preprint)
Latest update: 21 Oct 2024
Special issue
Altmetrics
Final-revised paper
Preprint