Articles | Volume 6, issue 4
https://doi.org/10.5194/bg-6-501-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-6-501-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Phosphorus burial in the ocean over glacial-interglacial time scales
F. Tamburini
now at: Group of Plant Nutrition, D-AGRL, ETH Zürich, Zürich, Switzerland
Geological Institute, D-ERDW, ETH Zürich, Zürich, Switzerland
K. B. Föllmi
Institut de Géologie, Université de Neuchâtel, Neuchâtel, Switzerland
now at: Institut de Géologie et Paléontologie, IGP, Université de Lausanne, Lausanne, Switzerland
Viewed
Total article views: 3,093 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 18 Dec 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,176 | 1,603 | 314 | 3,093 | 110 | 90 |
- HTML: 1,176
- PDF: 1,603
- XML: 314
- Total: 3,093
- BibTeX: 110
- EndNote: 90
Total article views: 2,257 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Apr 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
955 | 1,017 | 285 | 2,257 | 90 | 85 |
- HTML: 955
- PDF: 1,017
- XML: 285
- Total: 2,257
- BibTeX: 90
- EndNote: 85
Total article views: 836 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 18 Dec 2008)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
221 | 586 | 29 | 836 | 20 | 5 |
- HTML: 221
- PDF: 586
- XML: 29
- Total: 836
- BibTeX: 20
- EndNote: 5
Cited
20 citations as recorded by crossref.
- Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric <i>p</i>CO<sub>2</sub> and seawater composition over the last 130 000 years: a model study K. Wallmann et al. 10.5194/cp-12-339-2016
- Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial–Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory L. Menviel et al. 10.1016/j.quascirev.2012.09.012
- Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study C. O'Neill et al. 10.5194/cp-17-171-2021
- Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation I. Tsandev et al. 10.5194/bg-7-1973-2010
- Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model C. Slomp & C. Heinze 10.5194/bg-10-945-2013
- Is late Quaternary climate change governed by self-sustained oscillations in atmospheric CO2? K. Wallmann 10.1016/j.gca.2013.10.046
- Evaluating the biological pump efficiency of the Last Glacial Maximum ocean using <i>δ</i><sup>13</sup>C A. Morée et al. 10.5194/cp-17-753-2021
- Phosphorus cycling during the Hirnantian glaciation J. Müller et al. 10.1016/j.palaeo.2023.111906
- Glacial CO<sub>2</sub> decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust A. Yamamoto et al. 10.5194/cp-15-981-2019
- The phosphorus cycle and biological pump in Earth’s middle age: Reappraisal of the “Boring Billion” T. Huang et al. 10.1360/TB-2021-1168
- Drivers of the global phosphorus cycle over geological time M. Zhao et al. 10.1038/s43017-024-00603-4
- Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): Perspectives on the marine P cycle C. März et al. 10.1016/j.chemgeo.2013.11.004
- Seamless Integration of the Coastal Ocean in Global Marine Carbon Cycle Modeling M. Mathis et al. 10.1029/2021MS002789
- Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective G. Filippelli 10.1016/j.chemosphere.2011.02.019
- The impact of ICE‐6G ice sheet topography in the oceanic carbonate system N. Leonardo et al. 10.1002/joc.8236
- Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO<sub>2</sub> decrease using a large ensemble of modern plausible parameter sets K. Kemppinen et al. 10.5194/cp-15-1039-2019
- Greenland ice cores constrain glacial atmospheric fluxes of phosphorus H. Kjaer et al. 10.1002/2015JD023559
- The Biological Pump During the Last Glacial Maximum E. Galbraith & L. Skinner 10.1146/annurev-marine-010419-010906
- Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum K. Six et al. 10.5194/cp-20-1785-2024
- P/Ca in coral skeleton as a geochemical proxy for seawater phosphorus variation in Daya Bay, northern South China Sea T. Chen & K. Yu 10.1016/j.marpolbul.2011.07.014
19 citations as recorded by crossref.
- Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric <i>p</i>CO<sub>2</sub> and seawater composition over the last 130 000 years: a model study K. Wallmann et al. 10.5194/cp-12-339-2016
- Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial–Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory L. Menviel et al. 10.1016/j.quascirev.2012.09.012
- Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study C. O'Neill et al. 10.5194/cp-17-171-2021
- Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation I. Tsandev et al. 10.5194/bg-7-1973-2010
- Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model C. Slomp & C. Heinze 10.5194/bg-10-945-2013
- Is late Quaternary climate change governed by self-sustained oscillations in atmospheric CO2? K. Wallmann 10.1016/j.gca.2013.10.046
- Evaluating the biological pump efficiency of the Last Glacial Maximum ocean using <i>δ</i><sup>13</sup>C A. Morée et al. 10.5194/cp-17-753-2021
- Phosphorus cycling during the Hirnantian glaciation J. Müller et al. 10.1016/j.palaeo.2023.111906
- Glacial CO<sub>2</sub> decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust A. Yamamoto et al. 10.5194/cp-15-981-2019
- The phosphorus cycle and biological pump in Earth’s middle age: Reappraisal of the “Boring Billion” T. Huang et al. 10.1360/TB-2021-1168
- Drivers of the global phosphorus cycle over geological time M. Zhao et al. 10.1038/s43017-024-00603-4
- Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): Perspectives on the marine P cycle C. März et al. 10.1016/j.chemgeo.2013.11.004
- Seamless Integration of the Coastal Ocean in Global Marine Carbon Cycle Modeling M. Mathis et al. 10.1029/2021MS002789
- Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective G. Filippelli 10.1016/j.chemosphere.2011.02.019
- The impact of ICE‐6G ice sheet topography in the oceanic carbonate system N. Leonardo et al. 10.1002/joc.8236
- Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO<sub>2</sub> decrease using a large ensemble of modern plausible parameter sets K. Kemppinen et al. 10.5194/cp-15-1039-2019
- Greenland ice cores constrain glacial atmospheric fluxes of phosphorus H. Kjaer et al. 10.1002/2015JD023559
- The Biological Pump During the Last Glacial Maximum E. Galbraith & L. Skinner 10.1146/annurev-marine-010419-010906
- Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum K. Six et al. 10.5194/cp-20-1785-2024
Saved (preprint)
Latest update: 26 Dec 2024
Altmetrics
Final-revised paper
Preprint