Articles | Volume 7, issue 3
https://doi.org/10.5194/bg-7-1065-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-7-1065-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment
E. Breitbarth
Bjerknes Centre for Climate Research, University of Bergen, Bergen, Allégaten 55, 5007 Bergen, Norway
Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
R. J. Bellerby
Bjerknes Centre for Climate Research, University of Bergen, Bergen, Allégaten 55, 5007 Bergen, Norway
C. C. Neill
Bjerknes Centre for Climate Research, University of Bergen, Bergen, Allégaten 55, 5007 Bergen, Norway
M. V. Ardelan
Norwegian University of Science and Technology, Department of Chemistry, 7491 Trondheim, Norway
M. Meyerhöfer
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany
E. Zöllner
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany
P. L. Croot
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany
U. Riebesell
Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany
Viewed
Total article views: 4,437 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 09 Jul 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,131 | 2,141 | 165 | 4,437 | 142 | 119 |
- HTML: 2,131
- PDF: 2,141
- XML: 165
- Total: 4,437
- BibTeX: 142
- EndNote: 119
Total article views: 3,588 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 19 Mar 2010)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,812 | 1,638 | 138 | 3,588 | 126 | 116 |
- HTML: 1,812
- PDF: 1,638
- XML: 138
- Total: 3,588
- BibTeX: 126
- EndNote: 116
Total article views: 849 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 09 Jul 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
319 | 503 | 27 | 849 | 16 | 3 |
- HTML: 319
- PDF: 503
- XML: 27
- Total: 849
- BibTeX: 16
- EndNote: 3
Cited
68 citations as recorded by crossref.
- Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters J. Mélançon et al. 10.5194/bg-13-1677-2016
- Quantifying the impact of ocean acidification on our future climate R. Matear & A. Lenton 10.5194/bg-11-3965-2014
- Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters G. Samperio-Ramos et al. 10.1007/s10533-016-0192-x
- No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO2 in the South Pacific C. Law et al. 10.1111/j.1365-2486.2012.02777.x
- Rapid shifts in picoeukaryote community structure in response to ocean acidification N. Meakin & M. Wyman 10.1038/ismej.2011.18
- Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors V. Johnson et al. 10.3390/jmse3041425
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Marine phytoplankton and the changing ocean iron cycle D. Hutchins & P. Boyd 10.1038/nclimate3147
- Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment J. Bellworthy et al. 10.1371/journal.pone.0176268
- Exploring the Iron‐Binding Potential of the Ocean Using a Combined pH and DOC Parameterization Y. Ye et al. 10.1029/2019GB006425
- Environmental controls on coccolithophore calcification J. Raven & K. Crawfurd 10.3354/meps09993
- Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean A. Sinha et al. 10.1002/jobm.201800537
- Iron dissolution from Patagonian dust in the Southern Ocean: under present and future conditions C. Demasy et al. 10.3389/fmars.2024.1363088
- Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment A. Gunderson et al. 10.1146/annurev-marine-122414-033953
- Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton R. Lampe et al. 10.1038/s41467-023-42949-1
- Iron availability modulates the effects of future CO2 levels within the marine planktonic food web M. Segovia et al. 10.3354/meps12025
- The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions A. Tagliabue et al. 10.1029/2010GB003929
- Chemical Speciation and Bioavailability of Iron in Natural Waters - Linkage of Forest, River and Sea in View of Dynamics of Iron and Organic Matter M. NATSUIKE et al. 10.2965/jswe.39.197
- Influence of Ocean Acidification on the Organic Complexation of Iron and Copper in Northwest European Shelf Seas; a Combined Observational and Model Study L. Avendaño et al. 10.3389/fmars.2016.00058
- Ocean acidification state in western Antarctic surface waters: controls and interannual variability M. Mattsdotter Björk et al. 10.5194/bg-11-57-2014
- Fluorescence Quenching of Chlorophyll by Sea Water Components M. Vallieres & D. Donaldson 10.1021/acsearthspacechem.0c00247
- Influence of ocean warming and acidification on trace metal biogeochemistry L. Hoffmann et al. 10.3354/meps10082
- The impact of changing surface ocean conditions on the dissolution of aerosol iron M. Fishwick et al. 10.1002/2014GB004921
- Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate S. Basu & K. Mackey 10.3390/su10030869
- The biological pump in a high CO<sub>2 world U. Passow & C. Carlson 10.3354/meps09985
- Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: Implications for policy and management actions S. Jutterström et al. 10.1016/j.marpolbul.2014.06.027
- The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater J. Kim et al. 10.1098/rsta.2015.0296
- The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica F. Koch et al. 10.1002/lno.11045
- Effects of Ocean Acidification on Nitrogen Metabolism of Skeletonema costatum S. Wang et al. 10.1007/s11802-024-5899-z
- Organic matter production response to CO 2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions T. Yoshimura et al. 10.1016/j.dsr.2014.08.004
- Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana D. Shi et al. 10.1002/lno.10134
- Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach G. Samperio-Ramos et al. 10.1016/j.jmarsys.2018.01.009
- Mineral iron dissolution in Trichodesmium colonies: The role of O2 and pH microenvironments M. Eichner et al. 10.1002/lno.11377
- Towards accounting for dissolved iron speciation in global ocean models A. Tagliabue & C. Völker 10.5194/bg-8-3025-2011
- Southern Ocean phytoplankton physiology in a changing climate K. Petrou et al. 10.1016/j.jplph.2016.05.004
- Osmotic response of Dotilla fenestrata (sand bubbler crab) exposed to combined water acidity and varying metal (Cd and Pb) B. Adeleke et al. 10.1016/j.heliyon.2021.e06763
- The response of the marine nitrogen cycle to ocean acidification N. Wannicke et al. 10.1111/gcb.14424
- Implications of ocean acidification on micronutrient elements-iron, copper and zinc, and their primary biological impacts: A review E. Cheriyan et al. 10.1016/j.marpolbul.2023.115991
- Increased iron availability resulting from increased CO 2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta) B. Chen et al. 10.1016/j.chemosphere.2017.01.073
- EFFECTS ON MARINE ALGAE OF CHANGED SEAWATER CHEMISTRY WITH INCREASING ATMOSPHERIC CO<sub>2</sub> J. Raven 10.3318/BIOE.2011.01
- Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi M. Segovia et al. 10.3354/meps12389
- CO 2 concentrating mechanisms and environmental change J. Raven & J. Beardall 10.1016/j.aquabot.2014.05.008
- Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro C. Santana-González et al. 10.1016/j.marchem.2017.02.001
- The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism W. Su et al. 10.1016/j.scitotenv.2018.10.056
- Influence of Changes in pH and Temperature on the Distribution of Apparent Iron Solubility in the Oceans K. Zhu et al. 10.1029/2022GB007617
- Recent developments in ionophore-based potentiometric electrochemical sensors for oceanic carbonate detection S. Toala et al. 10.1039/D3SD00232B
- Atmospheric nutrients in seawater under current and high p CO 2 conditions after Saharan dust deposition: Results from three minicosm experiments J. Louis et al. 10.1016/j.pocean.2017.10.011
- Ocean acidification buffers the physiological responses of the king ragworm Alitta virens to the common pollutant copper C. Nielson et al. 10.1016/j.aquatox.2019.05.003
- Biokinetics of 110mAg in Baltic shrimp Palaemon adspersus under elevated pCO2 N. Sezer et al. 10.1016/j.jembe.2021.151528
- Nutrient dynamics under different ocean acidification scenarios in a low nutrient low chlorophyll system: The Northwestern Mediterranean Sea J. Louis et al. 10.1016/j.ecss.2016.01.015
- Future HAB science: Directions and challenges in a changing climate M. Wells et al. 10.1016/j.hal.2019.101632
- Reverse flow injection analysis method for catalytic spectrophotometric determination of iron in estuarine and coastal waters: A comparison with normal flow injection analysis Y. Huang et al. 10.1016/j.talanta.2012.01.050
- Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters T. Yoshimura et al. 10.1007/s10872-013-0196-2
- The biological uptake of dissolved iron in the changing Daya Bay, South China Sea: Effect of pH and DO B. Wang et al. 10.1016/j.marpolbul.2022.113635
- Influence of iron and carbon on the occurrence of Ulva prolifera (Ulvophyceae) in the Yellow Sea Z. Shao et al. 10.1016/j.rsma.2020.101224
- The effects of near-future coastal acidification on the concentrations of Cd and Pb in the crab Dotilla fenestrata B. Adeleke et al. 10.1016/j.heliyon.2020.e04744
- Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord E. Jones et al. 10.1525/elementa.438
- From the Ocean to the Lab—Assessing Iron Limitation in Cyanobacteria: An Interface Paper A. Hunnestad et al. 10.3390/microorganisms8121889
- Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary S. Greene et al. 10.1016/j.earscirev.2012.03.009
- Spatial and temporal variations in variable fluoresence in the Ross Sea (Antarctica): Oceanographic correlates and bloom dynamics W. Smith et al. 10.1016/j.dsr.2013.05.002
- An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river‐like system in the mid‐Atlantic United States during the Paleocene‐Eocene thermal maximum R. Kopp et al. 10.1029/2009PA001783
- Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options H. Watling 10.1016/j.hydromet.2014.03.013
- Remote-sensing observations relevant to ocean acidification Q. Sun et al. 10.1080/01431161.2012.685978
- Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria A. Borrero-Santiago et al. 10.1016/j.ecoenv.2016.04.020
- Response of bacterial communities in Barents Sea sediments in case of a potential CO2 leakage from carbon reservoirs A. Borrero-Santiago et al. 10.1016/j.marenvres.2020.105050
- Iron biogeochemistry across marine systems – progress from the past decade E. Breitbarth et al. 10.5194/bg-7-1075-2010
- Effect of Organic Fe-Ligands, Released by Emiliania huxleyi, on Fe(II) Oxidation Rate in Seawater Under Simulated Ocean Acidification Conditions: A Modeling Approach G. Samperio-Ramos et al. 10.3389/fmars.2018.00210
- Effect of ocean acidification on marine phytoplankton and biogeochemical cycles K. Sugie & T. Yoshimura 10.5928/kaiyou.20.5_101
60 citations as recorded by crossref.
- Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters J. Mélançon et al. 10.5194/bg-13-1677-2016
- Quantifying the impact of ocean acidification on our future climate R. Matear & A. Lenton 10.5194/bg-11-3965-2014
- Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters G. Samperio-Ramos et al. 10.1007/s10533-016-0192-x
- No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO2 in the South Pacific C. Law et al. 10.1111/j.1365-2486.2012.02777.x
- Rapid shifts in picoeukaryote community structure in response to ocean acidification N. Meakin & M. Wyman 10.1038/ismej.2011.18
- Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors V. Johnson et al. 10.3390/jmse3041425
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Marine phytoplankton and the changing ocean iron cycle D. Hutchins & P. Boyd 10.1038/nclimate3147
- Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment J. Bellworthy et al. 10.1371/journal.pone.0176268
- Exploring the Iron‐Binding Potential of the Ocean Using a Combined pH and DOC Parameterization Y. Ye et al. 10.1029/2019GB006425
- Environmental controls on coccolithophore calcification J. Raven & K. Crawfurd 10.3354/meps09993
- Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean A. Sinha et al. 10.1002/jobm.201800537
- Iron dissolution from Patagonian dust in the Southern Ocean: under present and future conditions C. Demasy et al. 10.3389/fmars.2024.1363088
- Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment A. Gunderson et al. 10.1146/annurev-marine-122414-033953
- Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton R. Lampe et al. 10.1038/s41467-023-42949-1
- Iron availability modulates the effects of future CO2 levels within the marine planktonic food web M. Segovia et al. 10.3354/meps12025
- The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions A. Tagliabue et al. 10.1029/2010GB003929
- Chemical Speciation and Bioavailability of Iron in Natural Waters - Linkage of Forest, River and Sea in View of Dynamics of Iron and Organic Matter M. NATSUIKE et al. 10.2965/jswe.39.197
- Influence of Ocean Acidification on the Organic Complexation of Iron and Copper in Northwest European Shelf Seas; a Combined Observational and Model Study L. Avendaño et al. 10.3389/fmars.2016.00058
- Ocean acidification state in western Antarctic surface waters: controls and interannual variability M. Mattsdotter Björk et al. 10.5194/bg-11-57-2014
- Fluorescence Quenching of Chlorophyll by Sea Water Components M. Vallieres & D. Donaldson 10.1021/acsearthspacechem.0c00247
- Influence of ocean warming and acidification on trace metal biogeochemistry L. Hoffmann et al. 10.3354/meps10082
- The impact of changing surface ocean conditions on the dissolution of aerosol iron M. Fishwick et al. 10.1002/2014GB004921
- Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate S. Basu & K. Mackey 10.3390/su10030869
- The biological pump in a high CO<sub>2 world U. Passow & C. Carlson 10.3354/meps09985
- Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: Implications for policy and management actions S. Jutterström et al. 10.1016/j.marpolbul.2014.06.027
- The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater J. Kim et al. 10.1098/rsta.2015.0296
- The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica F. Koch et al. 10.1002/lno.11045
- Effects of Ocean Acidification on Nitrogen Metabolism of Skeletonema costatum S. Wang et al. 10.1007/s11802-024-5899-z
- Organic matter production response to CO 2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions T. Yoshimura et al. 10.1016/j.dsr.2014.08.004
- Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana D. Shi et al. 10.1002/lno.10134
- Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach G. Samperio-Ramos et al. 10.1016/j.jmarsys.2018.01.009
- Mineral iron dissolution in Trichodesmium colonies: The role of O2 and pH microenvironments M. Eichner et al. 10.1002/lno.11377
- Towards accounting for dissolved iron speciation in global ocean models A. Tagliabue & C. Völker 10.5194/bg-8-3025-2011
- Southern Ocean phytoplankton physiology in a changing climate K. Petrou et al. 10.1016/j.jplph.2016.05.004
- Osmotic response of Dotilla fenestrata (sand bubbler crab) exposed to combined water acidity and varying metal (Cd and Pb) B. Adeleke et al. 10.1016/j.heliyon.2021.e06763
- The response of the marine nitrogen cycle to ocean acidification N. Wannicke et al. 10.1111/gcb.14424
- Implications of ocean acidification on micronutrient elements-iron, copper and zinc, and their primary biological impacts: A review E. Cheriyan et al. 10.1016/j.marpolbul.2023.115991
- Increased iron availability resulting from increased CO 2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta) B. Chen et al. 10.1016/j.chemosphere.2017.01.073
- EFFECTS ON MARINE ALGAE OF CHANGED SEAWATER CHEMISTRY WITH INCREASING ATMOSPHERIC CO<sub>2</sub> J. Raven 10.3318/BIOE.2011.01
- Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi M. Segovia et al. 10.3354/meps12389
- CO 2 concentrating mechanisms and environmental change J. Raven & J. Beardall 10.1016/j.aquabot.2014.05.008
- Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro C. Santana-González et al. 10.1016/j.marchem.2017.02.001
- The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism W. Su et al. 10.1016/j.scitotenv.2018.10.056
- Influence of Changes in pH and Temperature on the Distribution of Apparent Iron Solubility in the Oceans K. Zhu et al. 10.1029/2022GB007617
- Recent developments in ionophore-based potentiometric electrochemical sensors for oceanic carbonate detection S. Toala et al. 10.1039/D3SD00232B
- Atmospheric nutrients in seawater under current and high p CO 2 conditions after Saharan dust deposition: Results from three minicosm experiments J. Louis et al. 10.1016/j.pocean.2017.10.011
- Ocean acidification buffers the physiological responses of the king ragworm Alitta virens to the common pollutant copper C. Nielson et al. 10.1016/j.aquatox.2019.05.003
- Biokinetics of 110mAg in Baltic shrimp Palaemon adspersus under elevated pCO2 N. Sezer et al. 10.1016/j.jembe.2021.151528
- Nutrient dynamics under different ocean acidification scenarios in a low nutrient low chlorophyll system: The Northwestern Mediterranean Sea J. Louis et al. 10.1016/j.ecss.2016.01.015
- Future HAB science: Directions and challenges in a changing climate M. Wells et al. 10.1016/j.hal.2019.101632
- Reverse flow injection analysis method for catalytic spectrophotometric determination of iron in estuarine and coastal waters: A comparison with normal flow injection analysis Y. Huang et al. 10.1016/j.talanta.2012.01.050
- Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters T. Yoshimura et al. 10.1007/s10872-013-0196-2
- The biological uptake of dissolved iron in the changing Daya Bay, South China Sea: Effect of pH and DO B. Wang et al. 10.1016/j.marpolbul.2022.113635
- Influence of iron and carbon on the occurrence of Ulva prolifera (Ulvophyceae) in the Yellow Sea Z. Shao et al. 10.1016/j.rsma.2020.101224
- The effects of near-future coastal acidification on the concentrations of Cd and Pb in the crab Dotilla fenestrata B. Adeleke et al. 10.1016/j.heliyon.2020.e04744
- Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord E. Jones et al. 10.1525/elementa.438
- From the Ocean to the Lab—Assessing Iron Limitation in Cyanobacteria: An Interface Paper A. Hunnestad et al. 10.3390/microorganisms8121889
- Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary S. Greene et al. 10.1016/j.earscirev.2012.03.009
- Spatial and temporal variations in variable fluoresence in the Ross Sea (Antarctica): Oceanographic correlates and bloom dynamics W. Smith et al. 10.1016/j.dsr.2013.05.002
8 citations as recorded by crossref.
- An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river‐like system in the mid‐Atlantic United States during the Paleocene‐Eocene thermal maximum R. Kopp et al. 10.1029/2009PA001783
- Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options H. Watling 10.1016/j.hydromet.2014.03.013
- Remote-sensing observations relevant to ocean acidification Q. Sun et al. 10.1080/01431161.2012.685978
- Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria A. Borrero-Santiago et al. 10.1016/j.ecoenv.2016.04.020
- Response of bacterial communities in Barents Sea sediments in case of a potential CO2 leakage from carbon reservoirs A. Borrero-Santiago et al. 10.1016/j.marenvres.2020.105050
- Iron biogeochemistry across marine systems – progress from the past decade E. Breitbarth et al. 10.5194/bg-7-1075-2010
- Effect of Organic Fe-Ligands, Released by Emiliania huxleyi, on Fe(II) Oxidation Rate in Seawater Under Simulated Ocean Acidification Conditions: A Modeling Approach G. Samperio-Ramos et al. 10.3389/fmars.2018.00210
- Effect of ocean acidification on marine phytoplankton and biogeochemical cycles K. Sugie & T. Yoshimura 10.5928/kaiyou.20.5_101
Saved (preprint)
Latest update: 26 Dec 2024
Altmetrics
Final-revised paper
Preprint