Articles | Volume 7, issue 3
Biogeosciences, 7, 1065–1073, 2010
https://doi.org/10.5194/bg-7-1065-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Iron biogeochemistry across marine systems at changing times
19 Mar 2010
19 Mar 2010
Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment
E. Breitbarth et al.
Viewed
Total article views: 3,851 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 09 Jul 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,766 | 1,949 | 136 | 3,851 | 116 | 95 |
- HTML: 1,766
- PDF: 1,949
- XML: 136
- Total: 3,851
- BibTeX: 116
- EndNote: 95
Total article views: 3,065 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 19 Mar 2010)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,466 | 1,489 | 110 | 3,065 | 101 | 92 |
- HTML: 1,466
- PDF: 1,489
- XML: 110
- Total: 3,065
- BibTeX: 101
- EndNote: 92
Total article views: 786 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 09 Jul 2009)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
300 | 460 | 26 | 786 | 15 | 3 |
- HTML: 300
- PDF: 460
- XML: 26
- Total: 786
- BibTeX: 15
- EndNote: 3
Cited
62 citations as recorded by crossref.
- Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters J. Mélançon et al. 10.5194/bg-13-1677-2016
- Quantifying the impact of ocean acidification on our future climate R. Matear & A. Lenton 10.5194/bg-11-3965-2014
- Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters G. Samperio-Ramos et al. 10.1007/s10533-016-0192-x
- No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO 2 in the South Pacific C. Law et al. 10.1111/j.1365-2486.2012.02777.x
- Rapid shifts in picoeukaryote community structure in response to ocean acidification N. Meakin & M. Wyman 10.1038/ismej.2011.18
- Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors V. Johnson et al. 10.3390/jmse3041425
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Marine phytoplankton and the changing ocean iron cycle D. Hutchins & P. Boyd 10.1038/nclimate3147
- Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment J. Bellworthy et al. 10.1371/journal.pone.0176268
- Exploring the Iron‐Binding Potential of the Ocean Using a Combined pH and DOC Parameterization Y. Ye et al. 10.1029/2019GB006425
- Environmental controls on coccolithophore calcification J. Raven & K. Crawfurd 10.3354/meps09993
- Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean A. Sinha et al. 10.1002/jobm.201800537
- Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment A. Gunderson et al. 10.1146/annurev-marine-122414-033953
- Iron availability modulates the effects of future CO2 levels within the marine planktonic food web M. Segovia et al. 10.3354/meps12025
- The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions A. Tagliabue et al. 10.1029/2010GB003929
- Chemical Speciation and Bioavailability of Iron in Natural Waters - Linkage of Forest, River and Sea in View of Dynamics of Iron and Organic Matter M. NATSUIKE et al. 10.2965/jswe.39.197
- Influence of Ocean Acidification on the Organic Complexation of Iron and Copper in Northwest European Shelf Seas; a Combined Observational and Model Study L. Avendaño et al. 10.3389/fmars.2016.00058
- Ocean acidification state in western Antarctic surface waters: controls and interannual variability M. Mattsdotter Björk et al. 10.5194/bg-11-57-2014
- Fluorescence Quenching of Chlorophyll by Sea Water Components M. Vallieres & D. Donaldson 10.1021/acsearthspacechem.0c00247
- Influence of ocean warming and acidification on trace metal biogeochemistry L. Hoffmann et al. 10.3354/meps10082
- The impact of changing surface ocean conditions on the dissolution of aerosol iron M. Fishwick et al. 10.1002/2014GB004921
- Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate S. Basu & K. Mackey 10.3390/su10030869
- The biological pump in a high CO<sub>2 world U. Passow & C. Carlson 10.3354/meps09985
- Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: Implications for policy and management actions S. Jutterström et al. 10.1016/j.marpolbul.2014.06.027
- The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater J. Kim et al. 10.1098/rsta.2015.0296
- The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica F. Koch et al. 10.1002/lno.11045
- Organic matter production response to CO 2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions T. Yoshimura et al. 10.1016/j.dsr.2014.08.004
- Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana D. Shi et al. 10.1002/lno.10134
- Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach G. Samperio-Ramos et al. 10.1016/j.jmarsys.2018.01.009
- Mineral iron dissolution in Trichodesmium colonies: The role of O 2 and pH microenvironments M. Eichner et al. 10.1002/lno.11377
- Towards accounting for dissolved iron speciation in global ocean models A. Tagliabue & C. Völker 10.5194/bg-8-3025-2011
- Southern Ocean phytoplankton physiology in a changing climate K. Petrou et al. 10.1016/j.jplph.2016.05.004
- Osmotic response of Dotilla fenestrata (sand bubbler crab) exposed to combined water acidity and varying metal (Cd and Pb) B. Adeleke et al. 10.1016/j.heliyon.2021.e06763
- The response of the marine nitrogen cycle to ocean acidification N. Wannicke et al. 10.1111/gcb.14424
- Increased iron availability resulting from increased CO 2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta) B. Chen et al. 10.1016/j.chemosphere.2017.01.073
- EFFECTS ON MARINE ALGAE OF CHANGED SEAWATER CHEMISTRY WITH INCREASING ATMOSPHERIC CO<sub>2</sub> J. Raven 10.3318/BIOE.2011.01
- Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi M. Segovia et al. 10.3354/meps12389
- CO 2 concentrating mechanisms and environmental change J. Raven & J. Beardall 10.1016/j.aquabot.2014.05.008
- Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro C. Santana-González et al. 10.1016/j.marchem.2017.02.001
- The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism W. Su et al. 10.1016/j.scitotenv.2018.10.056
- Atmospheric nutrients in seawater under current and high p CO 2 conditions after Saharan dust deposition: Results from three minicosm experiments J. Louis et al. 10.1016/j.pocean.2017.10.011
- Ocean acidification buffers the physiological responses of the king ragworm Alitta virens to the common pollutant copper C. Nielson et al. 10.1016/j.aquatox.2019.05.003
- Biokinetics of 110mAg in Baltic shrimp Palaemon adspersus under elevated pCO2 N. Sezer et al. 10.1016/j.jembe.2021.151528
- Nutrient dynamics under different ocean acidification scenarios in a low nutrient low chlorophyll system: The Northwestern Mediterranean Sea J. Louis et al. 10.1016/j.ecss.2016.01.015
- Future HAB science: Directions and challenges in a changing climate M. Wells et al. 10.1016/j.hal.2019.101632
- Reverse flow injection analysis method for catalytic spectrophotometric determination of iron in estuarine and coastal waters: A comparison with normal flow injection analysis Y. Huang et al. 10.1016/j.talanta.2012.01.050
- Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters T. Yoshimura et al. 10.1007/s10872-013-0196-2
- Influence of iron and carbon on the occurrence of Ulva prolifera (Ulvophyceae) in the Yellow Sea Z. Shao et al. 10.1016/j.rsma.2020.101224
- The effects of near-future coastal acidification on the concentrations of Cd and Pb in the crab Dotilla fenestrata B. Adeleke et al. 10.1016/j.heliyon.2020.e04744
- Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord E. Jones et al. 10.1525/elementa.438
- From the Ocean to the Lab—Assessing Iron Limitation in Cyanobacteria: An Interface Paper A. Hunnestad et al. 10.3390/microorganisms8121889
- Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary S. Greene et al. 10.1016/j.earscirev.2012.03.009
- Spatial and temporal variations in variable fluoresence in the Ross Sea (Antarctica): Oceanographic correlates and bloom dynamics W. Smith et al. 10.1016/j.dsr.2013.05.002
- An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum R. Kopp et al. 10.1029/2009PA001783
- Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options H. Watling 10.1016/j.hydromet.2014.03.013
- Remote-sensing observations relevant to ocean acidification Q. Sun et al. 10.1080/01431161.2012.685978
- Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria A. Borrero-Santiago et al. 10.1016/j.ecoenv.2016.04.020
- Response of bacterial communities in Barents Sea sediments in case of a potential CO2 leakage from carbon reservoirs A. Borrero-Santiago et al. 10.1016/j.marenvres.2020.105050
- A possible CO 2 leakage event: Can the marine microbial community be recovered? A. Borrero-Santiago et al. 10.1016/j.marpolbul.2017.02.027
- Iron biogeochemistry across marine systems – progress from the past decade E. Breitbarth et al. 10.5194/bg-7-1075-2010
- Effect of Organic Fe-Ligands, Released by Emiliania huxleyi, on Fe(II) Oxidation Rate in Seawater Under Simulated Ocean Acidification Conditions: A Modeling Approach G. Samperio-Ramos et al. 10.3389/fmars.2018.00210
- Effect of ocean acidification on marine phytoplankton and biogeochemical cycles K. Sugie & T. Yoshimura 10.5928/kaiyou.20.5_101
53 citations as recorded by crossref.
- Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters J. Mélançon et al. 10.5194/bg-13-1677-2016
- Quantifying the impact of ocean acidification on our future climate R. Matear & A. Lenton 10.5194/bg-11-3965-2014
- Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters G. Samperio-Ramos et al. 10.1007/s10533-016-0192-x
- No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO 2 in the South Pacific C. Law et al. 10.1111/j.1365-2486.2012.02777.x
- Rapid shifts in picoeukaryote community structure in response to ocean acidification N. Meakin & M. Wyman 10.1038/ismej.2011.18
- Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors V. Johnson et al. 10.3390/jmse3041425
- Mechanisms driving Antarctic microbial community responses to ocean acidification: a network modelling approach R. Subramaniam et al. 10.1007/s00300-016-1989-8
- Marine phytoplankton and the changing ocean iron cycle D. Hutchins & P. Boyd 10.1038/nclimate3147
- Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment J. Bellworthy et al. 10.1371/journal.pone.0176268
- Exploring the Iron‐Binding Potential of the Ocean Using a Combined pH and DOC Parameterization Y. Ye et al. 10.1029/2019GB006425
- Environmental controls on coccolithophore calcification J. Raven & K. Crawfurd 10.3354/meps09993
- Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean A. Sinha et al. 10.1002/jobm.201800537
- Multiple Stressors in a Changing World: The Need for an Improved Perspective on Physiological Responses to the Dynamic Marine Environment A. Gunderson et al. 10.1146/annurev-marine-122414-033953
- Iron availability modulates the effects of future CO2 levels within the marine planktonic food web M. Segovia et al. 10.3354/meps12025
- The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions A. Tagliabue et al. 10.1029/2010GB003929
- Chemical Speciation and Bioavailability of Iron in Natural Waters - Linkage of Forest, River and Sea in View of Dynamics of Iron and Organic Matter M. NATSUIKE et al. 10.2965/jswe.39.197
- Influence of Ocean Acidification on the Organic Complexation of Iron and Copper in Northwest European Shelf Seas; a Combined Observational and Model Study L. Avendaño et al. 10.3389/fmars.2016.00058
- Ocean acidification state in western Antarctic surface waters: controls and interannual variability M. Mattsdotter Björk et al. 10.5194/bg-11-57-2014
- Fluorescence Quenching of Chlorophyll by Sea Water Components M. Vallieres & D. Donaldson 10.1021/acsearthspacechem.0c00247
- Influence of ocean warming and acidification on trace metal biogeochemistry L. Hoffmann et al. 10.3354/meps10082
- The impact of changing surface ocean conditions on the dissolution of aerosol iron M. Fishwick et al. 10.1002/2014GB004921
- Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate S. Basu & K. Mackey 10.3390/su10030869
- The biological pump in a high CO<sub>2 world U. Passow & C. Carlson 10.3354/meps09985
- Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: Implications for policy and management actions S. Jutterström et al. 10.1016/j.marpolbul.2014.06.027
- The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater J. Kim et al. 10.1098/rsta.2015.0296
- The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica F. Koch et al. 10.1002/lno.11045
- Organic matter production response to CO 2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions T. Yoshimura et al. 10.1016/j.dsr.2014.08.004
- Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana D. Shi et al. 10.1002/lno.10134
- Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach G. Samperio-Ramos et al. 10.1016/j.jmarsys.2018.01.009
- Mineral iron dissolution in Trichodesmium colonies: The role of O 2 and pH microenvironments M. Eichner et al. 10.1002/lno.11377
- Towards accounting for dissolved iron speciation in global ocean models A. Tagliabue & C. Völker 10.5194/bg-8-3025-2011
- Southern Ocean phytoplankton physiology in a changing climate K. Petrou et al. 10.1016/j.jplph.2016.05.004
- Osmotic response of Dotilla fenestrata (sand bubbler crab) exposed to combined water acidity and varying metal (Cd and Pb) B. Adeleke et al. 10.1016/j.heliyon.2021.e06763
- The response of the marine nitrogen cycle to ocean acidification N. Wannicke et al. 10.1111/gcb.14424
- Increased iron availability resulting from increased CO 2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta) B. Chen et al. 10.1016/j.chemosphere.2017.01.073
- EFFECTS ON MARINE ALGAE OF CHANGED SEAWATER CHEMISTRY WITH INCREASING ATMOSPHERIC CO<sub>2</sub> J. Raven 10.3318/BIOE.2011.01
- Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi M. Segovia et al. 10.3354/meps12389
- CO 2 concentrating mechanisms and environmental change J. Raven & J. Beardall 10.1016/j.aquabot.2014.05.008
- Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro C. Santana-González et al. 10.1016/j.marchem.2017.02.001
- The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism W. Su et al. 10.1016/j.scitotenv.2018.10.056
- Atmospheric nutrients in seawater under current and high p CO 2 conditions after Saharan dust deposition: Results from three minicosm experiments J. Louis et al. 10.1016/j.pocean.2017.10.011
- Ocean acidification buffers the physiological responses of the king ragworm Alitta virens to the common pollutant copper C. Nielson et al. 10.1016/j.aquatox.2019.05.003
- Biokinetics of 110mAg in Baltic shrimp Palaemon adspersus under elevated pCO2 N. Sezer et al. 10.1016/j.jembe.2021.151528
- Nutrient dynamics under different ocean acidification scenarios in a low nutrient low chlorophyll system: The Northwestern Mediterranean Sea J. Louis et al. 10.1016/j.ecss.2016.01.015
- Future HAB science: Directions and challenges in a changing climate M. Wells et al. 10.1016/j.hal.2019.101632
- Reverse flow injection analysis method for catalytic spectrophotometric determination of iron in estuarine and coastal waters: A comparison with normal flow injection analysis Y. Huang et al. 10.1016/j.talanta.2012.01.050
- Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters T. Yoshimura et al. 10.1007/s10872-013-0196-2
- Influence of iron and carbon on the occurrence of Ulva prolifera (Ulvophyceae) in the Yellow Sea Z. Shao et al. 10.1016/j.rsma.2020.101224
- The effects of near-future coastal acidification on the concentrations of Cd and Pb in the crab Dotilla fenestrata B. Adeleke et al. 10.1016/j.heliyon.2020.e04744
- Seasonal dynamics of carbonate chemistry, nutrients and CO2 uptake in a sub-Arctic fjord E. Jones et al. 10.1525/elementa.438
- From the Ocean to the Lab—Assessing Iron Limitation in Cyanobacteria: An Interface Paper A. Hunnestad et al. 10.3390/microorganisms8121889
- Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary S. Greene et al. 10.1016/j.earscirev.2012.03.009
- Spatial and temporal variations in variable fluoresence in the Ross Sea (Antarctica): Oceanographic correlates and bloom dynamics W. Smith et al. 10.1016/j.dsr.2013.05.002
9 citations as recorded by crossref.
- An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum R. Kopp et al. 10.1029/2009PA001783
- Chalcopyrite hydrometallurgy at atmospheric pressure: 2. Review of acidic chloride process options H. Watling 10.1016/j.hydromet.2014.03.013
- Remote-sensing observations relevant to ocean acidification Q. Sun et al. 10.1080/01431161.2012.685978
- Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria A. Borrero-Santiago et al. 10.1016/j.ecoenv.2016.04.020
- Response of bacterial communities in Barents Sea sediments in case of a potential CO2 leakage from carbon reservoirs A. Borrero-Santiago et al. 10.1016/j.marenvres.2020.105050
- A possible CO 2 leakage event: Can the marine microbial community be recovered? A. Borrero-Santiago et al. 10.1016/j.marpolbul.2017.02.027
- Iron biogeochemistry across marine systems – progress from the past decade E. Breitbarth et al. 10.5194/bg-7-1075-2010
- Effect of Organic Fe-Ligands, Released by Emiliania huxleyi, on Fe(II) Oxidation Rate in Seawater Under Simulated Ocean Acidification Conditions: A Modeling Approach G. Samperio-Ramos et al. 10.3389/fmars.2018.00210
- Effect of ocean acidification on marine phytoplankton and biogeochemical cycles K. Sugie & T. Yoshimura 10.5928/kaiyou.20.5_101
Saved (preprint)
Latest update: 14 Jan 2023
Altmetrics
Final-revised paper
Preprint