Articles | Volume 9, issue 5
https://doi.org/10.5194/bg-9-1671-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-9-1671-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer
J. B. Heffernan
Department of Biological Sciences, Florida International University, Miami, FL, USA
Southeast Environmental Research Center, Florida International University, Miami, FL, USA
present address: Nicholas School of the Environment, Duke University, Durham, NC, USA
A. R. Albertin
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
M. L. Fork
Department of Biological Sciences, Florida International University, Miami, FL, USA
B. G. Katz
US Geological Survey, Tallahasee, FL, USA
M. J. Cohen
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
Related subject area
Biogeochemistry: Groundwater
Small-scale hydrological patterns in a Siberian permafrost ecosystem affected by drainage
Predicting the impact of spatial heterogeneity on microbially mediated nutrient cycling in the subsurface
Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils
Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization
Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA
Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches
Biogeochemical constraints on the origin of methane in an alluvial aquifer: evidence for the upward migration of methane from underlying coal measures
Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatépetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms
Predicting the denitrification capacity of sandy aquifers from in situ measurements using push–pull 15N tracer tests
Biomass uptake and fire as controls on groundwater solute evolution on a southeast Australian granite: aboriginal land management hypothesis
17O excess traces atmospheric nitrate in paleo-groundwater of the Saharan desert
Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient
Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties
Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study
Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence
Characterization of broom fibers for PRB in the remediation of aquifers contaminated by heavy metals
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Syahrul Kurniawan, Marife D. Corre, Amanda L. Matson, Hubert Schulte-Bisping, Sri Rahayu Utami, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 15, 5131–5154, https://doi.org/10.5194/bg-15-5131-2018, https://doi.org/10.5194/bg-15-5131-2018, 2018
Short summary
Short summary
Our study generates information to aid policies and improve soil management practices for minimizing the negative impacts of forest conversion to rubber and oil palm plantations while maintaining production. Compared to forests, the fertilized areas of oil palm plantations had higher leaching of N, organic C, and base cations, whereas the unfertilized rubber plantations showed lower leaching of dissolved P and organic C. These signaled a decrease in extant soil fertility and groundwater quality.
Lara E. Pracht, Malak M. Tfaily, Robert J. Ardissono, and Rebecca B. Neumann
Biogeosciences, 15, 1733–1747, https://doi.org/10.5194/bg-15-1733-2018, https://doi.org/10.5194/bg-15-1733-2018, 2018
Short summary
Short summary
Organic carbon in aquifer recharge waters and sediments can fuel microbial reactions that affect groundwater quality. We used high-resolution mass spectrometry to molecularly characterize organic carbon mobilized off sediment collected from a Bangladeshi aquifer, to reference its composition against dissolved organic carbon in aquifer recharge water, to track compositional changes during incubation, and to advance understanding of microbial processing of organic carbon in anaerobic environments.
Ayumi Sugiyama, Suguru Masuda, Kazuyo Nagaosa, Maki Tsujimura, and Kenji Kato
Biogeosciences, 15, 721–732, https://doi.org/10.5194/bg-15-721-2018, https://doi.org/10.5194/bg-15-721-2018, 2018
Short summary
Short summary
The direct impact of rainfall on groundwater at Mt. Fuji, the largest volcanic mountain in Japan, was elucidated by multiple analyses including microbial DNA. Bacterial abundance and DNA not only supported the findings on the movement of groundwater obtained from chemical analyses but also elucidated chemically unseen flow. Evidence of piston flow in deep groundwater was first shown through changes in archaeal density and diversity. Microbial analysis extends our understanding of groundwater.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
Charlotte P. Iverach, Sabrina Beckmann, Dioni I. Cendón, Mike Manefield, and Bryce F. J. Kelly
Biogeosciences, 14, 215–228, https://doi.org/10.5194/bg-14-215-2017, https://doi.org/10.5194/bg-14-215-2017, 2017
Short summary
Short summary
This research characterised the biogeochemical constraints on the origin of methane in an alluvial aquifer, concluding that the most likely source was the upward migration from a directly underlying coal seam. This research was undertaken due to concerns about the effect of coal seam gas production on groundwater quality in the study area. The implications include the fact that no methane is being produced in the aquifer (in situ) and that there is local natural connectivity in the study area.
M. D'Addabbo, R. Sulpizio, M. Guidi, G. Capitani, P. Mantecca, and G. Zanchetta
Biogeosciences, 12, 7087–7106, https://doi.org/10.5194/bg-12-7087-2015, https://doi.org/10.5194/bg-12-7087-2015, 2015
Short summary
Short summary
Leaching experiments were carried out on fresh ash samples from the 2012 Popocatépetl, and 2011/12 Etna eruptions, in order to investigate the release of compounds in water. Results were discussed in the light of changing pH and release of compounds for the different leachates. They were used for toxicity experiments on living biota (Xenopus laevis). They are mildly toxic, and no significant differences exist between the toxic profiles of the two leachates.
W. Eschenbach, R. Well, and W. Walther
Biogeosciences, 12, 2327–2346, https://doi.org/10.5194/bg-12-2327-2015, https://doi.org/10.5194/bg-12-2327-2015, 2015
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Biogeosciences, 11, 4099–4114, https://doi.org/10.5194/bg-11-4099-2014, https://doi.org/10.5194/bg-11-4099-2014, 2014
M. Dietzel, A. Leis, R. Abdalla, J. Savarino, S. Morin, M. E. Böttcher, and S. Köhler
Biogeosciences, 11, 3149–3161, https://doi.org/10.5194/bg-11-3149-2014, https://doi.org/10.5194/bg-11-3149-2014, 2014
T. G. Troxler, C. Coronado-Molina, D. N. Rondeau, S. Krupa, S. Newman, M. Manna, R. M. Price, and F. H. Sklar
Biogeosciences, 11, 899–914, https://doi.org/10.5194/bg-11-899-2014, https://doi.org/10.5194/bg-11-899-2014, 2014
W. Eschenbach and R. Well
Biogeosciences, 10, 1013–1035, https://doi.org/10.5194/bg-10-1013-2013, https://doi.org/10.5194/bg-10-1013-2013, 2013
H. J. M. van Grinsven, H. F. M. ten Berge, T. Dalgaard, B. Fraters, P. Durand, A. Hart, G. Hofman, B. H. Jacobsen, S. T. J. Lalor, J. P. Lesschen, B. Osterburg, K. G. Richards, A.-K. Techen, F. Vertès, J. Webb, and W. J. Willems
Biogeosciences, 9, 5143–5160, https://doi.org/10.5194/bg-9-5143-2012, https://doi.org/10.5194/bg-9-5143-2012, 2012
B. Hansen, T. Dalgaard, L. Thorling, B. Sørensen, and M. Erlandsen
Biogeosciences, 9, 3277–3286, https://doi.org/10.5194/bg-9-3277-2012, https://doi.org/10.5194/bg-9-3277-2012, 2012
C. Fallico, S. Troisi, A. Molinari, and M. F. Rivera
Biogeosciences, 7, 2545–2556, https://doi.org/10.5194/bg-7-2545-2010, https://doi.org/10.5194/bg-7-2545-2010, 2010
Cited articles
Albertin, A. R., Sickman, J. O., Pinowska, A., and Stevenson, R. J.: Identification of nitrogen sources and transformations within karst springs using isotope tracers of nitrogen, Biogeochemistry, 108, 219–232, https://doi.org/10.1007/s10533-011-9592-0, 2011.
APHA, AWWA, and WEF: Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, Washington, DC, 2005.
Aravena, R. and Robertson, W. D.: Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume, Ground Water, 36, 975–982, 1998.
Arthur, J. D., Wood, H. A. R., Baker, A. E., Cichon, J. R., and Raines, G. L.: Development and implementation of a bayesian-based aquifer vulnerability assessment in Florida, Natural Resources Research, 16, 93–107, 2007.
Bedard-Haughn, A., van Groenigen, J. W., and van Kessel, C.: Tracing N-15 through landscapes: Potential uses and precautions, J. Hydrol., 272, 175–190, 2003.
Bohlke, J. K., Wanty, R., Tuttle, M., Delin, G., and Landon, M.: Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota, Water Resour. Res., 38, 1105–1130, https://doi.org/110510.1029/2001wr000663, 2002.
Bonn, M. A.: Visitor profiles, economic impacts and recreational aesthetic values associated with eight priority Florida springs located in the St. Johns River Water Management District, St. Johns River Water Management District, Palatka, FL, 136 pp., 2004.
Bonn, M. A. and Bell, F. W.: Economic impact of selected Florida springs on surrounding local areas., Florida Department of Environmental Protection, Tallahassee, Florida, USA, 99 pp., 2003.
Burgin, A. J. and Hamilton, S. K.: Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways, Front. Ecol. Environ., 5, 89–96, 2007.
Burns, D. A., Boyer, E. W., Elliott, E. M., and Kendall, C.: Sources and transformations of nitrate from streams draining varying land uses: Evidence from dual isotope analysis, J. Environ. Qual., 38, 1149–1159, https://doi.org/10.2134/jeq2008.0371, 2009.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Castro, M. C., Hall, C. M., Patriarche, D., Goblet, P., and Ellis, B. R.: A new noble gas paleoclimate record in Texas – basic assumptions revisited, Earth Planet. Sc. Lett., 257, 170–187, https://doi.org/10.1016/j.epsl.2007.02.030, 2007.
Cey, B. D., Hudson, G. B., Moran, J. E., and Scanlon, B. R.: Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer, Ground Water, 47, 646–659, https://doi.org/10.1111/j.1745-6584.2009.00562.x, 2009.
Chapelle, F. H., McMahon, P. B., Dubrovsky, N. M., Fujii, R. F., Oaksford, E. T., and Vroblesky, D. A.: Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems, Water Resour. Res., 31, 359–371, https://doi.org/10.1029/94wr02525, 1995.
Cohen, M. J., Heffernan, J. B., Albertin, A. A., and Martin, J. B.: Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes, J. Geophys. Res.-Biogeosci., 117, G01021, https://doi.org/10.1029/2011JG001715, 2012.
Dahm, C. N., Grimm, N. B., Marmonier, P., Valett, H. M., and Vervier, P.: Nutrient dynamics at the interface between surface waters and groundwaters, Freshwater Biol., 40, 427–451, 1998.
David, M. B., Wall, L. G., Royer, T. V., and Tank, J. L.: Denitrification and the nitrogen budget of a reservoir in an agricultural landscape, Ecol. Appl., 16, 2177–2190, 2006.
Davidson, E. A. and Seitzinger, S.: The enigma of progress in denitrification research, Ecol. Appl., 16, 2057–2063, 2006.
Dederkorkut, A.: Suwanee River Partnership: Representation instead of regulation, in: Adaptive Governance and Water Conflict: New Institutions for Collaborative Planning, edited by: Scholz, J. and Stiftel, B., Resources for the Future Press, Washington, DC, 25–39, 2005.
Duarte, C. M., Prairie, Y. T., Frazer, T. K., Hoyer, M. V., Notestein, S. K., Martínez, R., Dorsett, A., and Canfield, D. E.: Rapid accretion of dissolved organic carbon in the springs of Florida: the most organic-poor natural waters, Biogeosciences, 7, 4051–4057, https://doi.org/10.5194/bg-7-4051-2010, 2010.
Einsiedl, F. and Mayer, B.: Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, southern Germany, Environ. Sci. Technol., 40, 6697–6702, https://doi.org/10.1021/es061129x, 2006.
Eyre, B. D., Rysgaard, S., Dalsgaard, T., and Christensen, P. B.: Comparison of isotope pairing and N-2: Ar methods for measuring sediment-denitrification-assumptions, modifications, and implications, Estuaries, 25, 1077–1087, 2002.
Feast, N. A., Hiscock, K. M., Dennis, P. F., and Andrews, J. N.: Nitrogen isotope hydrochemistry and denitrification within the chalk aquifer system of North Norfolk, UK, J. Hydrol., 211, 233–252, 1998.
Fogg, G. E., Rolston, D. E., Decker, D. L., Louie, D. T., and Grismer, M. E.: Spatial variation in nitrogen isotope values beneath nitrate contamination sources, Ground Water, 36, 418–426, 1998.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., and Cosby, B. J.: The nitrogen cascade, Bioscience, 53, 341–356, 2003.
Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D.: Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria, Limnol. Oceanogr., 53, 2533–2545, 2008.
Green, C. T., Puckett, L. J., Bohlke, J. K., Bekins, B. A., Phillips, S. P., Kauffman, L. J., Denver, J. M., and Johnson, H. M.: Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States, J. Environ. Qual., 37, 994–1009, https://doi.org/10.2134/jeq2006.0419, 2008.
Green, C. T., Bohlke, J. K., Bekins, B. A., and Phillips, S. P.: Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer, Water Resourc. Res., 46, W08525, https://doi.org/10.1029/2009wr008903, 2010.
Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., Tague, C., Tonitto, C., and Vidon, P.: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models, Biogeochemistry, 93, 49–77, https://doi.org/10.1007/s10533-008-9277-5, 2009.
Gulley, J., Martin, J. B., Screaton, E. J., and Moore, P. J.: River reversals into karst springs: A model for cave enlargement in eogenetic karst aquifers, Geol. Soc. Am. Bull., 123, 457–467, https://doi.org/10.1130/b30254.1, 2011.
Hackley, K. C., Panno, S. V., Hwang, H. H., and Kelly, W. R.: Groundwater quality of springs and wells of the sinkhole plain in Southwestern Illinois: Determination of the dominant sources of nitrate, Illinois Geological Survey, Circular, 570, 2007.
Hall, C. M., Castro, M. C., Lohmann, K. C., and Ma, L.: Noble gases and stable isotopes in a shallow aquifer in southern Michigan: Implications for noble gas paleotemperature reconstructions for cool climates, Geophys. Res. Lett., 32, 4, L18404, https://doi.org/10.1029/2005gl023582, 2005.
Hamme, R. C. and Emerson, S. R.: The solubility of neon, nitrogen and argon in distilled water and seawater, Deep-Sea Research Part I-Oceanographic Research Papers, 51, 1517–1528, https://doi.org/10.1016/j.dsr.2004.06.009, 2004.
Harms, T. K. and Grimm, N. B.: Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone, J. Geophys. Res.-Biogeo., 113, G01020, 2008.
Harrington, D., Maddox, G., and Hicks, R.: Florida springs initiative monitoring network report and recognized sources of nitrate, Florida Department of Environmental Protection, Tallahassee, FL, 103, 2010.
Hedin, L. O., von Fischer, J. C., Ostrom, N. E., Kennedy, B. P., Brown, M. G., and Robertson, G. P.: Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces, Ecology, 79, 684–703, 1998.
Heffernan, J. B., Cohen, M. J., Frazer, T. K., Thomas, R., Rayfield, T., Gulley, J., Martin J. B., Delfino, J. J., and Graham, W. D.: Hydrologic and biotic influences on nitrate removal in a subtropical spring-fed river, Limnol. Oceanogr., 55, 249–263, 2010a.
Heffernan, J. B., Liebowitz, D. L., Frazer, T. K., Evans, J. M., and Cohen, M. J.: Algal blooms and the nitrogen-enrichment hypothesis in Florida springs: Evidence, alternatives, and adaptive management, Ecol. Appl., 20, 816–829, 2010b.
Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., and Cornwell, J. C.: Membrane inlet mass-spectrometer for rapid high-precision determination of N-2, O-2, and Ar in environmental water samples, Anal. Chem., 66, 4166–4170, 1994.
Katz, B. G.: Sources of nitrate contamination and age of water in large karstic springs of Florida, Environ. Geol., 46, 689–706, 2004.
Katz, B. G., Bohlke, J. K., and Hornsby, H. D.: Timescales for nitrate contamination of spring waters, northern Florida, USA, Chem. Geol., 179, 167–186, 2001.
Katz, B. G., Chelette, A. R., and Pratt, T. R.: Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA, J. Hydrol., 289, 36–61, https://doi.org/10.1016/j.hydrol.2003.11.001, 2004.
Katz, B. G., Sepulveda, A. A., and Verdi, R. J.: Estimating nitrogen loading to ground water and assessing vulnerability to nitrate contamination in a large karstic springs basin, Florida, J. Am. Water Resour. As., 45, 607–627, https://doi.org/10.1111/j.1752-1688.2009.00309.x, 2009.
Kendall, C.: Tracing nitrogen sources and cycling in catchments, in: Isotope tracers in catchment hydrology, edited by: Kendall, C., and McDonnell, J. J., Elsevier Science B.V., Amsterdam, The Netherlands, 1998.
Kendall, C. and Grim, E.: Combustion tube method for measurement of nitrogen isotope ratios using calcium-oxide for total removal of carbon-dioxide and water, Anal. Chem., 62, 526–529, 1990.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs of nitrogen to ecosystems, in: Stable isotopes in ecology and environmental science, edited by: Michener, R. H. and Lajtha, K., Wiley – Blackwell Publishing, Malden, MA, 375–449, 2007.
Kincaid, T. R., Hazlett, T. J., and Davies, G. J.: Quantitative groundwater tracing and effective numerical modeling in karst: an example from the Woodville Karst Plain of North Florida, in: Sinkholes and the Engineering and Environmental Impacts of Karst: Reston, VA, edited by: Beck, B. F., American Society of Civil Engineers, 114–121, 2005.
Knoller, K., Vogt, C., Haupt, M., Feisthauer, S., and Richnow, H. H.: Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification, Biogeochemistry, 103, 371–384, https://doi.org/10.1007/s10533-010-9483-9, 2011.
Knowles, L., Katz, B. G., and Toth, D. J.: Using multiple chemical indicators to characterize and determine the age of groundwater from selected vents of the Silver Springs group, central Florida, USA, Hydrogeol. J., 18, 1825–1838, https://doi.org/10.1007/s10040-010-0669-y, 2010.
Lehmann, M. F., Reichert, P., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.: Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone, Geochim. Cosmochim. Ac., 67, 2529–2542, https://doi.org/10.1016/s0016-7037(03)00085-1, 2003.
Loper, D., Landing, W., Pollman, C. , and Chan Hilton, A.: Degradation of water quality at Wakulla Springs, FL: Assessment and recommendations, Report of the Peer Review Committee on the Workshop Solving Water Pollution Problems in the Wakulla Springshed of North Florida. Florida Department of Environmental Protection, Tallahassee, FL, 70 pp., 2005.
Mariotti, A.: Denitrification in groundwaters, principles and methods for its identification – a review, J. Hydrol., 88, 1–23, 1986.
Martin, J. B. and Dean, R. W.: Exchange of water between conduits and matrix in the Floridan Aquifer, Chem. Geol., 179, 145–165, 2001.
Mattson, R. A., Lowe, E. F., Lippincott, C. L., Di, J., and Battoe, L.: Wekiva River and Rock Springs Run Pollutant Load Reduction Goals, Florida Department of Environmental Protection, Tallahassee, FL, 69 pp., 2006.
McCallum, J. E., Ryan, M. C., Mayer, B., and Rodvang, S. J.: Mixing-induced groundwater denitrification beneath a manured field in southern Alberta, Canada, Appl. Geochem., 23, 2146–2155, https://doi.org/10.1016/j.apgeochem.2008.03.018, 2008.
McMahon, P. B.: Aquifer/aquitard interfaces: Mixing zones that enhance biogeochemical reactions, Hydrogeol. J., 9, 34–43, https://doi.org/10.1007/s100400000109, 2001.
McMahon, P. B. and Bolke, J. K.: Regional patterns in the isotopic composition of natural and anthropogenic nitrate in groundwater, high plains, USA, Environ. Sc. Technol., 40, 2965–2970, https://doi.org/10.1021/es052229q, 2006.
Miller, J. A.: Ground water atlas of the United States; Alabama, Florida, Georgia, and South Carolina., Hydrologic atlas, U.S. Geological Survey, HA730-G, 1990.
Notholt, A. J. G., Sheldon, R. P., and Davidson, D. F.: North America and Greenland-introduction, in: Phosphate deposits of the world; Volume 2-Phosphate rock resources: Cambridge, edited by: Notholt, A. J. G., Sheldon, R. P., and Davidson, D. F., Cambridge University Press, 90–94, 1989.
Panno, S. V., Hackley, K. C., Hwang, H. H., and Kelly, W. R.: Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators, Chem. Geol., 179, 113–128, 2001.
Pittman, J. R., Hatzell, H. H., and Oaksford, E. T.: Spring contributions to water quality and nitrate loads in the Suwannee River during baseflow in July 1995, U. S. Geological Survey Water-Resources Investigations Report 97-4152, Reston, VA, 1997.
Schlesinger, W. H.: On the fate of anthropogenic nitrogen, Proceedings of the National Academy of Sciences of the United States of America, 106, 203–208, https://doi.org/10.1073/pnas.0810193105, 2009.
Schmidt, N., Lipp, E. K., Rose, J. B., and Luther, M. E.: Enso influences on seasonal rainfall and river discharge in Florida, Journal of Climate, 14, 615–628, https://doi.org/10.1175/1520-0442(2001)014<0615:eiosra>2.0.co;2, 2001.
Schwientek, M., Einsiedl, F., Stichler, W., Stogbauer, A., Strauss, H., and Maloszewski, P.: Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system, Chem. Geol., 255, 60–67, https://doi.org/10.1016/j.chemgeo.2008.06.005, 2008.
Scott, T. M., Means, G. H., Meegan, R. P., Means, R. C., Upchurch, S. B., Copeland, R. E., Jones, J., Roberts, T., and Willet, A.: Springs of Florida, Florida Geological Survey Bulletin 66, Tallahassee, FL, 347 pp., 2004.
Sebilo, M., Billen, G., Grably, M., and Mariotti, A.: Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system, Biogeochemistry, 63, 35–51, 2003.
Seitzinger, S., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G.: Denitrification across landscapes and waterscapes: A synthesis, Ecol. Appl., 16, 2064–2090, 2006.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Bohlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153, 2001.
Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. M., Ho, R., Cane, G., and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin, Global Biogeochem. Cy., 19, GB4022, https://doi.org/10.1029/2005gb002458, 2005.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D. M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen, Deep-Sea Res. Pt. I, 56, 1419–1439, https://doi.org/10.1016/j.dsr.2009.04.007, 2009.
Smith, V. H. and Schindler, D. W.: Eutrophication science: Where do we go from here?, Trends Ecol. Evol., 24, 201–207, https://doi.org/10.1016/j.tree.2008.11.009, 2009.
Tarits, C., Aquilina, L., Ayraud, V., Pauwels, H., Davy, P., Touchard, F., and Bour, O.: Oxido-reduction sequence related to flux variations of groundwater from a fractured basement aquifer (Ploemeur area, France), Appl. Geochem., 21, 29–47, https://doi.org/10.1016/j.apgeochem.2005.09.004, 2006.
Taylor, P. G. and Townsend, A. R.: Stoichiometric control of organic carbon-nitrate relationships from soils to the sea, Nature, 464, 1178–1181, https://doi.org/10.1038/nature08985, 2010.
Tihansky, A. B. and Sacks, L. A.: Evaluation of nitrate sources using nitrogen-isotope techniques in shallow ground water within selected lake basins in the Central Lakes District, Polk and Highlands Counties, Florida, US Geological Survey, Reston, VA, Water-Resources Investigations Report 97-4207, 1997.
Torrento, C., Cama, J., Urmeneta, J., Otero, N., and Soler, A.: Denitrification of groundwater with pyrite and thiobacillus denitrificans, Chem. Geol., 278, 80–91, https://doi.org/10.1016/j.chemgeo.2010.09.003, 2010.
Torrento, C., Urmeneta, J., Otero, N., Soler, A., Vinas, M., and Cama, J.: Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite, Chem. Geol., 287, 90–101, https://doi.org/10.1016/j.chemgeo.2011.06.002, 2011.
Toth, D. J. and Katz, B. G.: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs, Hydrogeol. J., 14, 827–847, https://doi.org/10.1007/s10040-005-0478-x, 2006.
Townsend, A. R. and Davidson, E. A.: Denitrification across landscapes and waterscapes, Ecol. Appl., 16, 2055–2056, 2006.
Upchurch, S. B., Chen, J., and Cain, C. R.: Trends of nitrate concentrations in waters of thesuwannee river water management district, 2007, Suwannee River Water Management District, Live Oak, FL, 2007.
USGS (US Geological Survey): Nutrients in the Upper Mississippi River: Scientific information to support management decisions, USGS Fact Sheet 6, 2003.
Vitousek, P. M.: Beyond global warming – ecology and global change, Ecology, 75, 1861–1876, 1994.
Vogel, J. C., Talma, A. S., and Heaton, T. H. E.: Gaseous nitrogen as evidence for denitrification in groundwater, J. Hydrol., 50, 191–200, https://doi.org/10.1016/0022-1694(81)90069-x, 1981.
Wicks, C. M. and Herman, J. S.: The effect of a confining unit on the geochemical evolution of groundwater in the Upper Floridan Aquifer system, J. Hydrol., 153, 139–155, https://doi.org/10.1016/0022-1694(94)90189-9, 1994.
Wilson, G. B. and McNeill, G. W.: Noble gas recharge temperatures and the excess air component, Appl. Geochem., 12, 747–762, https://doi.org/10.1016/s0883-2927(97)00035-8, 1997.
Wood, E. D., Armstrong, F. A. J., and Richards, F. A.: Determination of nitrate in sea water by cadmium–copper reduction to nitrite, J. Marine Biol. Assoc. UK, 47, 31–43, 1967.
Zhang, Y. C., Slomp, C. P., Broers, H. P., Passier, H. F., and Van Cappellen, P.: Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer, Geochim. Cosmochim. Ac., 73, 6716–6726, https://doi.org/10.1016/j.gca.2009.08.026, 2009.
Altmetrics
Final-revised paper
Preprint