Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 9, issue 12
Biogeosciences, 9, 5023–5029, 2012
https://doi.org/10.5194/bg-9-5023-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Nitrogen and global change

Biogeosciences, 9, 5023–5029, 2012
https://doi.org/10.5194/bg-9-5023-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Dec 2012

Research article | 07 Dec 2012

Abundance and distribution of gaseous ammonia and particulate ammonium at Delhi, India

S. Singh and U. C. Kulshrestha S. Singh and U. C. Kulshrestha
  • School of Environmental Sciences Jawaharlal Nehru University, New Delhi 110067, India

Abstract. This study reports abundance and distribution of gaseous NH3 and particulate NH4+ at Delhi. Gaseous NH3 and particulate NH4+ concentrations were measured during pre-monsoon, monsoon and post-monsoon seasons of the years 2010 and 2011. Average concentrations of gaseous NH3 during pre-monsoon, monsoon and post-monsoon seasons were recorded as 26.4, 33.2 and 32.5 μg m−3, respectively. Gaseous NH3 concentrations were the highest during monsoon, thought to be due to decay and decomposition of plants and other biogenic material under wet conditions, leading to increased NH3 emission. The results showed that particulate NH4+ was always lower than the gaseous NH3 during all the seasons. The concentrations of particulate NH4+ were recorded as 11.6, 22.9 and 8.5 μg m−3 during pre-monsoon, monsoon and post-monsoon seasons, respectively. The percent fraction of particulate NH4+ was noticed to be highest during the monsoon season, which is attributed to increased humidity levels favouring partitioning into the aerosol phase. On an average, 33.3% of total N-NHx was present as particulate NH4+. Higher concentrations of NH3 noticed during night time may be due to stable atmospheric conditions. The study highlighted that, as compared with rural sites, urban sites showed higher concentrations of gaseous NH3 in India, which may be due to higher population density, human activities and poor sanitation arrangements.

Publications Copernicus
Download
Citation
Final-revised paper
Preprint