Preprints
https://doi.org/10.5194/bgd-7-6051-2010
https://doi.org/10.5194/bgd-7-6051-2010
13 Aug 2010
 | 13 Aug 2010
Status: this preprint was under review for the journal BG but the revision was not accepted.

Seasonal variations in nitrate isotope composition of three rivers draining into the North Sea

A. Deek, K. Emeis, and U. Struck

Abstract. Nitrate loading of coastal ecosystems by rivers that drain industrialised catchments continues to be a problem in the South Eastern North Sea, in spite of significant mitigation efforts over the last 2 decades. To identify nitrate sources, sinks, and turnover in three German rivers that discharge into the German Bight, we determined δ 15N-NO3- and δ18O- NO3- in nitrate and δ 15N of particulate nitrogen for the period 2006–2009 (biweekly samples). The nitrate loads of Rhine, Weser and Ems varied seasonally in magnitude and δ 15N-NO3- (6.5–21‰), whereas the δ 18O-NO3- (-0.3–5.9‰) and δ 15N-PN (4–14‰) were less variable. Overall temporal patterns in nitrate mass fluxes and isotopic composition suggest that a combination of nitrate delivery from nitrification of soil ammonia in the catchment and assimilation of nitrate in the rivers control the isotopic composition of nitrate. Nitrification in soils as a source is indicated by low δ 18O-NO3- in winter, which traces the δ 18O of river water. Mean values of δ 18O-H2O were between –9.4‰ and –7.3‰; combined in a ratio of 2:1 with the atmospheric oxygen δ 18O of 23.5‰ agrees with the found δ 18O of nitrate in the rivers.

Parallel variations of δ 15N-NO3- and δ 18O-NO3- within each individual river are caused by isotope effects associated with nitrate assimilation in the water column, the extent of which is determined by residence time in the river. Assimilation is furthermore to some extent mirrored both by the δ 15N of nitrate and particulate N. Although δ 15-NO3- observed in Rhine, Weser and Ems are reflected in high average δ 15N-PN (between 6‰ and 9‰, both are uncorrelated in the time series due to lateral and temporal mixing of PN. That a larger enrichment was consistently seen in δ 15N-NO3- relative to δ 18O-NO3- is attributed to constant additional diffuse nitrate inputs deriving from soil nitrification in the catchment area. A statistically significant inverse correlation exists between increasing δ 15N-NO3- values and decreasing NO3- concentrations. This inverse relationship – observed in each seasonal cycle – together with a robust relationship between human dominated land use and δ 15N-NO3- values demonstrates a strong influence of human activities and riverine nitrate consumption efficiency on the isotopic composition of riverine nitrate.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
A. Deek, K. Emeis, and U. Struck
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
A. Deek, K. Emeis, and U. Struck
A. Deek, K. Emeis, and U. Struck

Viewed

Total article views: 1,681 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
907 651 123 1,681 63 53
  • HTML: 907
  • PDF: 651
  • XML: 123
  • Total: 1,681
  • BibTeX: 63
  • EndNote: 53
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)

Cited

Saved

Latest update: 13 Dec 2024
Download
Altmetrics