Preprints
https://doi.org/10.5194/bgd-10-1483-2013
https://doi.org/10.5194/bgd-10-1483-2013
30 Jan 2013
 | 30 Jan 2013
Status: this preprint was under review for the journal BG but the revision was not accepted.

Detailed regional predictions of N2O and NO emissions from a tropical highland rainforest

N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx

Abstract. Tropical forest soils are a significant source for the greenhouse gas N2O as well as for NO, a precursor of tropospheric ozone. However, current estimates are uncertain due to the limited number of field measurements. Furthermore, there is considerable spatial and temporal variability of N2O and NO emissions due to the variation of environmental conditions such as soil properties, vegetation characteristics and meteorology. In this study we used a process-based model (ForestDNDC-tropica) to estimate N2O and NO emissions from tropical highland forest (Nyungwe) soils in southwestern Rwanda. To extend the model inputs to regional scale, ForestDNDC-tropica was linked to an exceptionally large legacy soil dataset. There was agreement between N2O and NO measurements and the model predictions though the ForestDNDC-tropica resulted in considerable lower emissions for few sites. Low similarity was specifically found for acidic soil with high clay content and reduced metals, indicating that chemo-denitrification processes on acidic soils might be under-represented in the current ForestDNDC-tropica model. The results showed that soil bulk density and pH are the most influential factors driving spatial variations in soil N2O and NO emissions for tropical forest soils. The area investigated (1113 km2) was estimated to emit ca. 439 ± 50 t N2O-N yr−1 (2.8–5.5 kg N2O-N ha−1 yr−1) and 244 ± 16 t NO-N yr−1 (0.8–5.1 kg N ha−1 yr−1). Consistent with less detailed studies, we confirm that tropical highland rainforest soils are a major source of atmospheric N2O and NO.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx
N. Gharahi Ghehi, C. Werner, K. Hufkens, R. Kiese, E. Van Ranst, D. Nsabimana, G. Wallin, L. Klemedtsson, K. Butterbach-Bahl, and P. Boeckx

Viewed

Total article views: 3,812 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
3,090 605 117 3,812 78 74
  • HTML: 3,090
  • PDF: 605
  • XML: 117
  • Total: 3,812
  • BibTeX: 78
  • EndNote: 74
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)

Cited

Saved

Latest update: 20 Jan 2025
Download
Altmetrics