Preprints
https://doi.org/10.5194/bgd-10-4995-2013
https://doi.org/10.5194/bgd-10-4995-2013
12 Mar 2013
 | 12 Mar 2013
Status: this preprint was under review for the journal BG but the revision was not accepted.

Decoupling of above and belowground C and N pools within predominant plant species Stipa grandis along a precipitation gradient in Chinese steppe zone

X. H. Ye, X. Pan, W. K. Cornwell, J. H. C. Cornelissen, Y. Chu, S. Q. Gao, R. Q. Li, J. J. Qiao, and M. Dong

Abstract. The coupling of the carbon and nutrient cycles drives the food web structure and biogeochemistry of ecosystems. However, across precipitation gradients, there may be a shift in C and N pools from above- to belowground because of shifting plant stoichiometry and allocation. Here, we present a study which is the first to explicitly compare above- and belowground pool sizes of N and C within predominant plant species along precipitation gradient. We dissected these pools into biomass allocation and nutrient concentrations. Based on previous evidence, biomass allocation to roots should increase with aridity, while leaf [N] should increase. If their effect sizes are equal, they should cancel each other out, and the above- and belowground proportions of the N would remain constant. Along a precipitation gradient in Chinese steppe zone, the effect sizes of the biomass shifts were remarkably consistent among the predominant species, Stipa grandis. The effect sizes of biomass allocation and [N] were equal and the proportion of N of above- and belowground did not change with aridity, but the shift in leaf [C] with aridity was much weaker than the biomass shift, leading to a decrease in the proportion of C belowground at dry sites. Precipitation gradients do decouple the C and N pool of S. grandis along a precipitation gradient in Chinese steppe zone.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
X. H. Ye, X. Pan, W. K. Cornwell, J. H. C. Cornelissen, Y. Chu, S. Q. Gao, R. Q. Li, J. J. Qiao, and M. Dong
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
X. H. Ye, X. Pan, W. K. Cornwell, J. H. C. Cornelissen, Y. Chu, S. Q. Gao, R. Q. Li, J. J. Qiao, and M. Dong
X. H. Ye, X. Pan, W. K. Cornwell, J. H. C. Cornelissen, Y. Chu, S. Q. Gao, R. Q. Li, J. J. Qiao, and M. Dong

Viewed

Total article views: 1,517 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
927 499 91 1,517 68 58
  • HTML: 927
  • PDF: 499
  • XML: 91
  • Total: 1,517
  • BibTeX: 68
  • EndNote: 58
Views and downloads (calculated since 12 Mar 2013)
Cumulative views and downloads (calculated since 12 Mar 2013)

Cited

Saved

Latest update: 20 Jan 2025
Download
Altmetrics