Status: this discussion paper is a preprint. It has been under review for the journal Biogeosciences (BG). The manuscript was not accepted for further review after discussion.
Uncertainties in global crop model frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates
Christian Folberth,Joshua Elliott,Christoph Müller,Juraj Balkovic,James Chryssanthacopoulos,Roberto C. Izaurralde,Curtis D. Jones,Nikolay Khabarov,Wenfeng Liu,Ashwan Reddy,Erwin Schmid,Rastislav Skalský,Hong Yang,Almut Arneth,Philippe Ciais,Delphine Deryng,Peter J. Lawrence,Stefan Olin,Thomas A. M. Pugh,Alex C. Ruane,and Xuhui Wang
Abstract. Global gridded crop models (GGCMs) combine field-scale agronomic models or sets of plant growth algorithms with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different bio-physical models, setups, and input data. While algorithms have been in the focus of recent GGCM comparisons, this study investigates differences in maize and wheat yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) project. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, geographic distribution of cultivars, and selection of subroutines e.g. for the estimation of potential evapotranspiration or soil erosion. The analyses reveal long-term trends and inter-annual yield variability in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. Absolute yield levels as well depend not only on nutrient supply but also on the parameterization and distribution of crop cultivars. All GGCMs show an intermediate performance in reproducing reported absolute yield levels or inter-annual dynamics. Our findings suggest that studies focusing on the evaluation of differences in bio-physical routines may require further harmonization of input data and management assumptions in order to eliminate background noise resulting from differences in model setups. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for bracketing such uncertainties as long as comprehensive global datasets taking into account regional differences in crop management, cultivar distributions and coefficients for parameterizing agro-environmental processes are lacking. Finally, we recommend improvements in the documentation of setups and input data of GGCMs in order to allow for sound interpretability, comparability and reproducibility of published results.
Received: 07 Dec 2016 – Discussion started: 20 Dec 2016
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Christian Folberth,Joshua Elliott,Christoph Müller,Juraj Balkovic,James Chryssanthacopoulos,Roberto C. Izaurralde,Curtis D. Jones,Nikolay Khabarov,Wenfeng Liu,Ashwan Reddy,Erwin Schmid,Rastislav Skalský,Hong Yang,Almut Arneth,Philippe Ciais,Delphine Deryng,Peter J. Lawrence,Stefan Olin,Thomas A. M. Pugh,Alex C. Ruane,and Xuhui Wang
Christian Folberth,Joshua Elliott,Christoph Müller,Juraj Balkovic,James Chryssanthacopoulos,Roberto C. Izaurralde,Curtis D. Jones,Nikolay Khabarov,Wenfeng Liu,Ashwan Reddy,Erwin Schmid,Rastislav Skalský,Hong Yang,Almut Arneth,Philippe Ciais,Delphine Deryng,Peter J. Lawrence,Stefan Olin,Thomas A. M. Pugh,Alex C. Ruane,and Xuhui Wang
Christian Folberth,Joshua Elliott,Christoph Müller,Juraj Balkovic,James Chryssanthacopoulos,Roberto C. Izaurralde,Curtis D. Jones,Nikolay Khabarov,Wenfeng Liu,Ashwan Reddy,Erwin Schmid,Rastislav Skalský,Hong Yang,Almut Arneth,Philippe Ciais,Delphine Deryng,Peter J. Lawrence,Stefan Olin,Thomas A. M. Pugh,Alex C. Ruane,and Xuhui Wang
Viewed
Total article views: 3,716 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
2,812
762
142
3,716
562
158
175
HTML: 2,812
PDF: 762
XML: 142
Total: 3,716
Supplement: 562
BibTeX: 158
EndNote: 175
Views and downloads (calculated since 20 Dec 2016)
Cumulative views and downloads
(calculated since 20 Dec 2016)
Viewed (geographical distribution)
Total article views: 3,534 (including HTML, PDF, and XML)
Thereof 3,529 with geography defined
and 5 with unknown origin.
Karlsruhe Institute of Technology, IMK-IFU, 82467 Garmisch-Partenkirchen, Germany
School of Geography, Earth & Environmental Science and Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
Global crop models differ in numerous aspects such as algorithms, parameterization, input data, and management assumptions. This study compares five global crop model frameworks, all based on the same field-scale model, to identify differences induced by the latter three. Results indicate that foremost nutrient supply, soil handling, and crop management induce substantial differences in crop yield estimates whereas crop cultivars primarily result in scaling of yield levels.
Global crop models differ in numerous aspects such as algorithms, parameterization, input data,...