Status: this preprint has been withdrawn by the authors.
The importance of nitrogen fixation to a temperate, intertidal embayment determined using a stable isotope mass balance approach
Douglas G. Russell,Adam J. Kessler,Wei Wen Wong,and Perran L. M. Cook
Abstract. The balance between denitrification and nitrogen fixation is the key control of the availability of nitrogen in coastal ecosystems and thus the primary productivity of these environments. However, evaluating the importance of denitrification and nitrogen fixation over large spatial and temporal scales is problematic. In this study, a combined mass and stable isotope balance of nitrogen was used to constrain the cycling of nitrogen in Western Port, Victoria – a temperate, intertidal embayment in south-eastern Australia. This method is a more effective approach compared to the extrapolation of discrete measurements and geochemical approaches. The validity of the isotope and mass balance model has been tested by comparing the output of the model with the average measured isotopic signature of the sediment in Western Port. Using previously measured rates of nitrogen fixation and denitrification in combination with the isotopic signature of nitrogen inputs from the catchment, atmosphere and the marine environment, the model returned an isotopic signature of 4.1 ± 2.5 ‰. This compares favorably with the average measured isotopic signature of the sediment of 3.9 ± 1.2 ‰. Sensitivity analysis confirmed that it was the isotopic values of the end-members, fractionation factors of assimilation and denitrification that exerted the greatest control over the isotopic signature of the sediment and not the loadings of the source and sink terms. Analysis of the relative importance of the various nitrogen inputs into the bay suggests that nitrogen fixation contributes 36 % of the total nitrogen inputs to Western Port.
This preprint has been withdrawn.
Received: 11 Oct 2017 – Discussion started: 27 Nov 2017
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Using discrete measurements to investigate nitrogen cycling in marine environments can be problematic as such extrapolations mightn't accurately describe how nitrogen is processed over large spatial and temporal scales. The ability of a stable isotope and mass balance to overcome these issues was investigated, with results being compared to actual sedimentary nitrogen measurements. The closeness of the results suggested that the model developed accurately described the cycling of nitrogen.
Using discrete measurements to investigate nitrogen cycling in marine environments can be...