Preprints
https://doi.org/10.5194/bg-2017-423
https://doi.org/10.5194/bg-2017-423
30 Nov 2017
 | 30 Nov 2017
Status: this preprint was under review for the journal BG. A revision for further review has not been submitted.

CO2 and CH4 budgets and global warming potential modifications in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea

Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Xiaole Yin, Guillaume Belot, Wang Shuguang, and Fatima Laggoun-Défarge

Abstract. Plant communities play a key role in regulating greenhouse gas (GHG) emissions in peatland ecosystems and therefore in their ability to act as carbon (C) sinks. However, in response to global change, a shift from Sphagnum to vascular plant-dominated peatlands may occur, with a potential alteration in their C-sink function. To investigate how the main GHG fluxes (CO2 and CH4) are affected by a plant community change (shift from dominance of Sphagnum mosses to vascular plants, i.e. Molinia caerulea), a mesocosm experiment was set up. Gross primary production (GPP), ecosystem respiration (ER) and CH4 emission models were used to estimate the annual C balance and global warming potential under both vegetation covers. While the ER and CH4 emission models estimated an output of, respectively, 376 and 7 gC m−2 y−1 in Sphagnum mesocosms, this reached 1018 and 33 gC m−2 y−1 in mesocosms with Sphagnum rubellum and Molinia caerulea. Annual modelled GPP was estimated at −414 and −1273 gC m−2 y−1 in Sphagnum and Sphagnum + Molinia plots, respectively, leading to an annual CO2 and CH4 budget of −30 gC m−2 y−1 in Sphagnum plots and of −223 gC m−2 y−1 in Sphagnum + Molinia ones (i.e., a C-sink). Even if, CH4 emissions accounted for a small part of the gaseous C efflux (ca. 3 %), their global warming potential value makes both plant communities have a climate warming effect. The shift of vegetation from Sphagnum mosses to Molinia caerulea seems beneficial for C sequestration at a gaseous level. However, roots and litters of Molinia caerulea could provide substrates for C emissions that were not taken into account in the short measurement period studied here.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Xiaole Yin, Guillaume Belot, Wang Shuguang, and Fatima Laggoun-Défarge
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Xiaole Yin, Guillaume Belot, Wang Shuguang, and Fatima Laggoun-Défarge
Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Xiaole Yin, Guillaume Belot, Wang Shuguang, and Fatima Laggoun-Défarge

Viewed

Total article views: 1,304 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
918 328 58 1,304 189 64 59
  • HTML: 918
  • PDF: 328
  • XML: 58
  • Total: 1,304
  • Supplement: 189
  • BibTeX: 64
  • EndNote: 59
Views and downloads (calculated since 30 Nov 2017)
Cumulative views and downloads (calculated since 30 Nov 2017)

Viewed (geographical distribution)

Total article views: 1,258 (including HTML, PDF, and XML) Thereof 1,253 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Altmetrics