Preprints
https://doi.org/10.5194/bg-2017-557
https://doi.org/10.5194/bg-2017-557
23 Jan 2018
 | 23 Jan 2018
Status: this preprint was under review for the journal BG but the revision was not accepted.

Excess nitrogen as a marker of intense dinitrogen fixation in the Western Tropical South Pacific Ocean: impact on the thermocline waters of the South Pacific

Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes

Abstract. As part of the Oligotrophy to UlTra-oligotrophy PACific Experiment cruise, which took place in the Western Tropical South Pacific during the austral summer (March–April 2015), we present data on nitrate, phosphate and on particulate and dissolved organic matter. The stoichiometric nitrogen-to-phosphorus ratios of the inorganic and organic material and the tracer N* are described. N* allows to trace changes in the proportion of fixed nitrogen due to diazotrophy and/or denitrification. Our results showed that the Melanesian archipelago waters between 160° E and 170° W are characterized by a deficit of nitrate and phosphate in the productive layer, significant dinitrogen fixation rates and an excess of particulate organic nitrogen compared to the canonical ratio of Redfield. A positive N* anomaly was observed in the productive layer reflecting the combined effect of phosphate uptake by diazotrophic organisms and remineralization of excess particulate organic nitrogen. The South Pacific Gyre waters between 170° W and 160° W were depleted in nitrate but rich in phosphate. Surface waters exhibited very low dinitrogen fixation rates, an absence of excess particulate organic nitrogen and a N* signal close to zero. The higher iron availability coupled with an absence of nitrate in the suface water of the Melanesian archipelago could stimulate the diazotrophic activity, which in turn will introduce excess nitrogen, deplete the surface waters in phosphate and be the explanation for the positive N* anomaly in the Melanesian archipelago waters. In the thermocline waters, the N* tracer revealed its full complexity, with notably the cumulative effect of the remineralization of particulate organic nitrogen and the effects of the mixing of water masses. At the global ocean scale, calculation of N* signal from the new Global Ocean Data Analysis Project version 2 database showed a strong spatial decoupling between the thermocline waters of the Eastern Tropical South Pacific and those of the Western Tropical South Pacific. A strongly positive N* anomaly was observed in the thermocline waters of the Western Tropical South Pacific in the Coral/Tasman Seas and in the southern part of the subtropical gyre between latitude 23° S and 32° S. A strong negative N* signal was observed in the waters of the Eestern Tropical South Pacific between latitude 5° S and 20° S–23° S. We hypothesise that the nitrogen excess observed in the thermocline waters of the Western Tropical South Pacific is transported eastward and then northward by the circulation of the South Pacific subtropical gyre and could influence positively the thermocline waters of the South Pacific being thus at the origin of the westward increase of the strongly negative N* signal transported by the South Equatorial Current.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes
Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes

Viewed

Total article views: 1,681 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,155 453 73 1,681 219 73 77
  • HTML: 1,155
  • PDF: 453
  • XML: 73
  • Total: 1,681
  • Supplement: 219
  • BibTeX: 73
  • EndNote: 77
Views and downloads (calculated since 23 Jan 2018)
Cumulative views and downloads (calculated since 23 Jan 2018)

Viewed (geographical distribution)

Total article views: 1,632 (including HTML, PDF, and XML) Thereof 1,626 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 09 Sep 2024
Download
Short summary
The Melanesian archipelago waters between 160° E and 170° W are characterized by a significant N2 fixation rates and an excess of particulate organic nitrogen compared to the canonical ratio of Redfield and a positive N*. We hypothesize that the southern branch of the subtropical gyre is probably the main vector of excess nitrogen transport in the thermocline waters showing an influence of nitrogen fixation occurring in the western tropical in a large part of the South Pacific.
Altmetrics