Preprints
https://doi.org/10.5194/bg-2019-37
https://doi.org/10.5194/bg-2019-37
14 Feb 2019
 | 14 Feb 2019
Status: this preprint has been withdrawn by the authors.

Global variability of carbon use efficiency in terrestrial ecosystems

Xiaolu Tang, Nuno Carvalhais, Catarina Moura, Bernhard Ahrens, Sujan Koirala, Shaohui Fan, Fengying Guan, Wenjie Zhang, Sicong Gao, Vincenzo Magliulo, Pauline Buysse, Shibin Liu, Guo Chen, Wunian Yang, Zhen Yu, Jingjing Liang, Leilei Shi, Shenyan Pu, and Markus Reichstein

Abstract. Vegetation carbon use efficiency (CUE) is a key measure of carbon (C) transfer from the atmosphere to terrestrial biomass, and indirectly reflects how much C is released through autotrophic respiration from the vegetation to the atmosphere. Diagnosing the variability of CUE with climate and other environmental factors is fundamental to understand its driving factors, and to further fill the current gaps in knowledge about the environmental controls on CUE. Thus, to study CUE variability and its driving factors, this study established a global database of site-year CUE based on observations from 188 field measurement sites for five ecosystem types – forest, grass, wetland, crop and tundra. The spatial pattern of CUE was predicted from global climate and soil variables using Random Forest, and compared with estimates from Dynamic Global Vegetation Models (DGVMs) from the TRENDY model ensemble. Globally, we found two prominent CUE gradients in ecosystem types and latitude, that is, CUE varied with ecosystem types, being the highest in wetlands and lowest in grassland, and CUE decreased with latitude with the lowest CUE in tropics, and the highest CUE in higher latitude regions. CUE varied greatly between data-derived CUE and TRENDY-CUE, but also among TRENDY models. Both data-derived and TRENDY-CUE challenged the constant value of 0.5 for CUE, independent of environmental controls. However, given the role of CUE in controlling the spatial and temporal variability of the terrestrial biosphere C cycle, these results emphasize the need to better understand the biotic and abiotic controls on CUE to reduce the uncertainties in prognostic land-process model simulations. Finally, this study proposed a new estimate of net primary production based on CUE and gross primary production, offering another benchmark for net primary production comparison for global carbon modelling.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Xiaolu Tang, Nuno Carvalhais, Catarina Moura, Bernhard Ahrens, Sujan Koirala, Shaohui Fan, Fengying Guan, Wenjie Zhang, Sicong Gao, Vincenzo Magliulo, Pauline Buysse, Shibin Liu, Guo Chen, Wunian Yang, Zhen Yu, Jingjing Liang, Leilei Shi, Shenyan Pu, and Markus Reichstein

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Xiaolu Tang, Nuno Carvalhais, Catarina Moura, Bernhard Ahrens, Sujan Koirala, Shaohui Fan, Fengying Guan, Wenjie Zhang, Sicong Gao, Vincenzo Magliulo, Pauline Buysse, Shibin Liu, Guo Chen, Wunian Yang, Zhen Yu, Jingjing Liang, Leilei Shi, Shenyan Pu, and Markus Reichstein
Xiaolu Tang, Nuno Carvalhais, Catarina Moura, Bernhard Ahrens, Sujan Koirala, Shaohui Fan, Fengying Guan, Wenjie Zhang, Sicong Gao, Vincenzo Magliulo, Pauline Buysse, Shibin Liu, Guo Chen, Wunian Yang, Zhen Yu, Jingjing Liang, Leilei Shi, Shenyan Pu, and Markus Reichstein

Viewed

Total article views: 2,856 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,844 935 77 2,856 237 65 86
  • HTML: 1,844
  • PDF: 935
  • XML: 77
  • Total: 2,856
  • Supplement: 237
  • BibTeX: 65
  • EndNote: 86
Views and downloads (calculated since 14 Feb 2019)
Cumulative views and downloads (calculated since 14 Feb 2019)

Viewed (geographical distribution)

Total article views: 2,582 (including HTML, PDF, and XML) Thereof 2,560 with geography defined and 22 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Jan 2025
Download

This preprint has been withdrawn.

Short summary
Vegetation CUE is a key measure of carbon transfer from the atmosphere to terrestrial biomass. This study modelled global CUE with published observations using random forest. CUE varied with ecosystem types and spatially decreased with latitude, challenging the previous conclusion that CUE was independent of environmental controls. Our results emphasize a better understanding of environmental controls on CUE to reduce uncertainties in prognostic land-process model simulations.
Altmetrics