Articles | Volume 10, issue 10
https://doi.org/10.5194/bg-10-6591-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-6591-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Deep CO2 soil inhalation / exhalation induced by synoptic pressure changes and atmospheric tides in a carbonated semiarid steppe
E. P. Sánchez-Cañete
Departamento de Desertificación y Geo-ecologia, EEZA-CSIC, Ctra. Sacramento s/n, 04120, La cañada de San Urbano, Almería, Spain
Centro Andaluz de Medio Ambiente (CEAMA), 18006, Granada, Spain
A. S. Kowalski
Centro Andaluz de Medio Ambiente (CEAMA), 18006, Granada, Spain
Departamento de Física Aplicada, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
P. Serrano-Ortiz
Departamento de Desertificación y Geo-ecologia, EEZA-CSIC, Ctra. Sacramento s/n, 04120, La cañada de San Urbano, Almería, Spain
Centro Andaluz de Medio Ambiente (CEAMA), 18006, Granada, Spain
O. Pérez-Priego
Centro Andaluz de Medio Ambiente (CEAMA), 18006, Granada, Spain
Departamento de Física Aplicada, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
F. Domingo
Departamento de Desertificación y Geo-ecologia, EEZA-CSIC, Ctra. Sacramento s/n, 04120, La cañada de San Urbano, Almería, Spain
Related authors
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024, https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
EGUsphere, https://doi.org/10.5194/egusphere-2024-848, https://doi.org/10.5194/egusphere-2024-848, 2024
Short summary
Short summary
This study investigated soil respiration and the main factors involved in a semiarid environment (olive grove). For this purpose, one year of automatic multi-chamber measurements were used, accompanied by ecosystem respiration data obtained using the eddy covariance technique. The soil respiration annual balance, Q10 parameter, rain pulses, and spatial and temporal variability of soil respiration are presented in this manuscript.
Ana López-Ballesteros, Cecilio Oyonarte, Andrew S. Kowalski, Penélope Serrano-Ortiz, Enrique P. Sánchez-Cañete, M. Rosario Moya, and Francisco Domingo
Biogeosciences, 15, 263–278, https://doi.org/10.5194/bg-15-263-2018, https://doi.org/10.5194/bg-15-263-2018, 2018
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024, https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1966, https://doi.org/10.5194/egusphere-2024-1966, 2024
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched, but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges, requiring non-diffusive transport. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
EGUsphere, https://doi.org/10.5194/egusphere-2024-848, https://doi.org/10.5194/egusphere-2024-848, 2024
Short summary
Short summary
This study investigated soil respiration and the main factors involved in a semiarid environment (olive grove). For this purpose, one year of automatic multi-chamber measurements were used, accompanied by ecosystem respiration data obtained using the eddy covariance technique. The soil respiration annual balance, Q10 parameter, rain pulses, and spatial and temporal variability of soil respiration are presented in this manuscript.
Andrew S. Kowalski
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-195, https://doi.org/10.5194/hess-2018-195, 2018
Preprint withdrawn
Short summary
Short summary
This technical note derives the additional specific energy of evaporation, beyond the latent heat of vaporization, as the work done against ambient pressure when water expands from the liquid to the gas phase. The derivation yields a simple function of the virtual temperature, and corrects for a systematic 3–4 % underestimation of the energy required to evaporate water into the Earth's atmosphere.
Ana López-Ballesteros, Cecilio Oyonarte, Andrew S. Kowalski, Penélope Serrano-Ortiz, Enrique P. Sánchez-Cañete, M. Rosario Moya, and Francisco Domingo
Biogeosciences, 15, 263–278, https://doi.org/10.5194/bg-15-263-2018, https://doi.org/10.5194/bg-15-263-2018, 2018
Andrew S. Kowalski
Atmos. Chem. Phys., 17, 8177–8187, https://doi.org/10.5194/acp-17-8177-2017, https://doi.org/10.5194/acp-17-8177-2017, 2017
Short summary
Short summary
An analysis based on physical conservation law demonstrates that surface–atmosphere exchanges include a non-diffusive component. This implies the need to revise flux gradient relationships including eddy diffusivities in micrometeorology and stomatal conductances in plant physiology.
Gianluca Tramontana, Martin Jung, Christopher R. Schwalm, Kazuhito Ichii, Gustau Camps-Valls, Botond Ráduly, Markus Reichstein, M. Altaf Arain, Alessandro Cescatti, Gerard Kiely, Lutz Merbold, Penelope Serrano-Ortiz, Sven Sickert, Sebastian Wolf, and Dario Papale
Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, https://doi.org/10.5194/bg-13-4291-2016, 2016
Short summary
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
M. Roland, P. Serrano-Ortiz, A. S. Kowalski, Y. Goddéris, E. P. Sánchez-Cañete, P. Ciais, F. Domingo, S. Cuezva, S. Sanchez-Moral, B. Longdoz, D. Yakir, R. Van Grieken, J. Schott, C. Cardell, and I. A. Janssens
Biogeosciences, 10, 5009–5017, https://doi.org/10.5194/bg-10-5009-2013, https://doi.org/10.5194/bg-10-5009-2013, 2013
Related subject area
Biogeophysics: Turbulence & Biota
Phytoplankton growth and consumption by microzooplankton stimulated by turbulent nitrate flux suggest rapid trophic transfer in the oligotrophic Kuroshio
Validation of Thorpe-scale-derived vertical diffusivities against microstructure measurements in the Kerguelen region
Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England
Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform
Toru Kobari, Taiga Honma, Daisuke Hasegawa, Naoki Yoshie, Eisuke Tsutsumi, Takeshi Matsuno, Takeyoshi Nagai, Takeru Kanayama, Fukutaro Karu, Koji Suzuki, Takahiro Tanaka, Xinyu Guo, Gen Kume, Ayako Nishina, and Hirohiko Nakamura
Biogeosciences, 17, 2441–2452, https://doi.org/10.5194/bg-17-2441-2020, https://doi.org/10.5194/bg-17-2441-2020, 2020
Short summary
Short summary
We report on biological productivity under turbulent nitrate flux amplified with the Kuroshio. Oceanographic observations exhibit that the Kuroshio topographically enhances significant turbulent mixing and nitrate influx to the euphotic zone. Onboard experiments show phytoplankton and microzooplankton growths enhanced with the nitrate flux and a significant microzooplankton grazing on phytoplankton. These rapid and systematic trophodynamics enhance biological productivity in the Kuroshio.
Y.-H. Park, J.-H. Lee, I. Durand, and C.-S. Hong
Biogeosciences, 11, 6927–6937, https://doi.org/10.5194/bg-11-6927-2014, https://doi.org/10.5194/bg-11-6927-2014, 2014
M. V. Thomas, Y. Malhi, K. M. Fenn, J. B. Fisher, M. D. Morecroft, C. R. Lloyd, M. E. Taylor, and D. D. McNeil
Biogeosciences, 8, 1595–1613, https://doi.org/10.5194/bg-8-1595-2011, https://doi.org/10.5194/bg-8-1595-2011, 2011
J. Hong, J. Kim, H. Ishikawa, and Y. Ma
Biogeosciences, 7, 1271–1278, https://doi.org/10.5194/bg-7-1271-2010, https://doi.org/10.5194/bg-7-1271-2010, 2010
Cited articles
Barron-Gafford, G. A., Scott, R. L., Jenerette, G. D., and Huxman, T. E.: The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales, J. Geophys. Res.-Biogeosci., 116, G01023, https://doi.org/10.1029/2010jg001442, 2011.
Bowling, D. R. and Massman, W. J.: Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack, J. Geophys. Res.-Biogeosci., 116, G04006, https://doi.org/10.1029/2011jg001722, 2011.
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E. D.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Clements, W. and Wilkening, M.: Atmospheric pressure effects on 222Rn transport across the earth-air interface, J. Geophys. Res., 79, 5025–5029, 1974.
Comas, X., Slater, L., and Reeve, A.: Spatial variability in biogenic gas accumulations in peat soils is revealed by ground penetrating radar (GPR), Geophys. Res. Lett., 32, L08401, https://doi.org/10.1029/2004gl022297, 2005.
Comas, X., Slater, L., and Reeve, A.: In situ monitoring of free-phase gas accumulation and release in peatlands using ground penetrating radar (GPR), Geophys. Res. Lett., 34, L06402, https://doi.org/10.1029/2006gl029014, 2007.
Comas, X., Slater, L., and Reeve, A. S.: Atmospheric pressure drives changes in the vertical distribution of biogenic free-phase gas in a northern peatland, J. Geophys. Res.-Biogeo., 116, G04014, https://doi.org/10.1029/2011jg001701, 2011.
Cuezva, S., Fernandez-Cortes, A., Benavente, D., Serrano-Ortiz, P., Kowalski, A. S., and Sanchez-Moral, S.: Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer, Atmos. Environ., 45, 1418–1427, https://doi.org/10.1016/j.atmosenv.2010.12.023, 2011.
Emmerich, E. W.: Carbon dioxide fluxes in a semiarid environment with high carbonate soils, Agric. For. Meteorol., 116, 91–102, 2003.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, H., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agric. For. Meteorol., 107, 43–69, https://doi.org/10.1016/s0168-1923(00)00225-2, 2001.
Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Goldstein, A. H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Munger, J. W., Oechel, W., Paw, K. T., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., and Wofsy, S.: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements, Agric. For. Meteorol., 113, 53–74, 2002.
Fujiyoshi, R., Haraki, Y., Sumiyoshi, T., Amano, H., Kobal, I., and Vaupotic, J.: Tracing the sources of gaseous components (Rn-222, CO2 and its carbon isotopes) in soil air under a cool-deciduous stand in Sapporo, Japan, Environ. Geochem. Health, 32, 73–82, https://doi.org/10.1007/s10653-009-9266-1, 2010.
Granieri, D., Chiodini, G., Marzocchi, W., and Avino, R.: Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters, Earth Planet. Sci. Lett., 212, 167–179, https://doi.org/10.1016/s0012-821x(03)00232-2, 2003.
Hirsch, A. I., Trumbore, S. E., and Goulden, M. L.: The surface CO2 gradient and pore-space storage flux in a high-porosity litter layer, Tellus B, 56, 312–321, https://doi.org/10.1111/j.1600-0889.2004.00113.x, 2004.
Huwald, H., Selker, J. S., Tyler, S. W., Calaf, M., van de Giesen, N. C., and Parlange, M. B.: Carbon monoxide as a tracer of gas transport in snow and other natural porous media, Geophys. Res. Lett., 39, L02504, https://doi.org/10.1029/2011gl050247, 2012.
Kowalski, A. S., Anthoni, P. M., Vong, R. J., Delany, A. C., and Maclean, G. D.: Deployment and evaluation of a system for ground-based measurement of cloud liquid water turbulent fluxes, Journal of Atmospheric and Oceanic Technology, 14, 468–479, https://doi.org/10.1175/1520-0426(1997)014<0468:daeoas>2.0.co;2, 1997.
Kowalski, A. S., Serrano-Ortiz, P., Janssens, I. A., Sanchez-Moraic, S., Cuezva, S., Domingo, F., Were, A., and Alados-Arboledas, L.: Can flux tower research neglect geochemical CO2 exchange?, Agric. For. Meteorol., 148, 1045-1054, https://doi.org/10.1016/j.agrformet.2008.02.004, 2008.
Kowalski, A. S. and Sanchez-Canete, E. P.: A New Definition of the Virtual Temperature, Valid for the Atmosphere and the CO2-Rich Air of the Vadose Zone, J. Appl. Meteorol. Climatol., 49, 1692–1695, https://doi.org/10.1175/2010jamc2534.1, 2010.
Lewicki, J. L., Hilley, G. E., Tosha, T., Aoyagi, R., Yamamoto, K., and Benson, S. M.: Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California, Geophys. Res. Lett., 34, L03401, https://doi.org/10.1029/2006gl028848, 2007.
Lewicki, J. L., Fischer, M. L., and Hilley, G. E.: Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: Performance evaluation and role of meteorological forcing, J. Volcanol. Geotherm. Res., 171, 178–190, https://doi.org/10.1016/j.jvolgeores.2007.11.029, 2008.
Lindzen, R. S.: Atmospheric tides, Annu. Rev. Earth Planet. Sci., 7, 199–225, https://doi.org/10.1146/annurev.ea.07.050179.001215, 1979.
Maier, M., Schack-Kirchner, H., Hildebrand, E. E., and Holst, J.: Pore-space CO2 dynamics in a deep, well-aerated soil, European Journal of Soil Science, 61, 877–887, https://doi.org/10.1111/j.1365-2389.2010.01287.x, 2010.
Maranon-Jimenez, S., Castro, J., Kowalski, A. S., Serrano-Ortiz, P., Reverter, B. R., Sanchez-Canete, E. P., and Zamora, R.: Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem, Forest Ecol. Manage., 261, 1436–1447, https://doi.org/10.1016/j.foreco.2011.01.030, 2011.
Maier, M., Schack-Kirchner, H., Aubinet, M., Goffi, S., Longdoz, B., and Parent, F.: Turbulence Effect on Gas Transport in Three Contrasting Forest Soils, Soil Sci. Soc. Am. J., 76, 1518–1528, https://doi.org/10.2136/sssaj2011.0376, 2012.
Massman, W. J., Sommerfeld, R. A., Mosier, A. R., Zeller, K. F., Hehn, T. J., and Rochelle, S. G.: A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks, J. Geophys. Res.-Atmos., 102, 18851–18863, https://doi.org/10.1029/97jd00844, 1997.
Mielnick, P., Dugas, W. A., Mitchell, K., and Havstad, K.: Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland, J. Arid. Environ., 60, 423–436, https://doi.org/10.1016/j.jaridenv.2004.06.001, 2005.
Nachshon, U., Dragila, M., and Weisbrod, N.: From atmospheric winds to fracture ventilation: Cause and effect, J. Geophys. Res.-Biogeosci., 117, G02016, https://doi.org/10.1029/2011jg001898, 2012.
Oyonarte, C., Rey, A., Raimundo, J., Miralles, I., and Escribano, P.: The use of soil respiration as an ecological indicator in arid ecosystems of the SE of Spain: Spatial variability and controlling factors, Ecol. Indic., 14, 40–49, https://doi.org/10.1016/j.ecolind.2011.08.013, 2012.
Perez-Priego, O., Serrano-Ortiz, P., Sanchez-Canete, E. P., Domingo, F., and Kowalski, A. S.: Isolating the effect of subterranean ventilation on CO2 emissions from drylands to the atmosphere, Agric. For. Meteorol., 180, 194–202, https://doi.org/10.1016/j.agrformet.2013.06.014, 2013.
Plestenjak, G., Eler, K., Vodnik, D., Ferlan, M., Cater, M., Kanduc, T., Simoncic, P., and Ogrinc, N.: Sources of soil CO2 in calcareous grassland with woody plant encroachment, J. Soils Sedim., 12, 1327–1338, https://doi.org/10.1007/s11368-012-0564-3, 2012.
Reicosky, D. C., Gesch, R. W., Wagner, S. W., Gilbert, R. A., Wente, C. D., and Morris, D. R.: Tillage and wind effects on soil CO2 concentrations in muck soils, Soil Tillage Res., 99, 221–231, https://doi.org/10.1016/j.still.2008.02.006, 2008.
Rey, A., Pegoraro, E., Oyonarte, C., Were, A., Escribano, P., and Raimundo, J.: Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain, Soil Biol. Biochem., 43, 393–403, https://doi.org/10.1016/j.soilbio.2010.11.007, 2011.
Rey, A., Belelli-Marchesini, L., Were, A., Serrano-Ortiz, P., Etiope, G., Papale, D., Domingo, F., and Pegoraro, E.: Wind as a main driver of the net ecosystem carbon balance of a semiarid Mediterranean steppe in the South East of Spain, Glob. Change Biol., 18, 539–554, https://doi.org/10.1111/j.1365-2486.2011.02534.x, 2012a.
Rey, A., Etiope, G., Belelli-Marchesini, L., Papale, D., and Valentini, R.: Geologic carbon sources may confound ecosystem carbon balance estimates: Evidence from a semiarid steppe in the southeast of Spain, J. Geophys. Res.-Biogeo., 117, G03034, https://doi.org/10.1029/2012JG001991, 2012b.
Rogie, J. D., Kerrick, D. M., Sorey, M. L., Chiodini, G., and Galloway, D. L.: Dynamics of carbon dioxide emission at Mammoth Mountain, California, Earth Planet. Sci. Lett., 188, 535–541, https://doi.org/10.1016/s0012-821x(01)00344-2, 2001.
Sanchez-Canete, E. P., Serrano-Ortiz, P., Kowalski, A. S., Oyonarte, C., and Domingo, F.: Subterranean CO2 ventilation and its role in the net ecosystem carbon balance of a karstic shrubland, Geophys. Res. Lett., 38, L09802, https://doi.org/10.1029/2011gl047077, 2011.
Sanchez-Canete, E. P., Serrano-Ortiz, P., Domingo, F., and Kowalski, A. S.: Cave ventilation is influenced by variations in the CO2-dependent virtual temperature, Int. J. Speleol., 42, 1–8, https://doi.org/10.5038/1827-806X.42.1.1, 2013.
Seok, B., Helmig, D., Williams, M. W., Liptzin, D., Chowanski, K., and Hueber, J.: An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado, Biogeochemistry, 95, 95–113, https://doi.org/10.1007/s10533-009-9302-3, 2009.
Serrano-Ortiz, P., Domingo, F., Cazorla, A., Were, A., Cuezva, S., Villagarcia, L., Alados-Arboledas, L., and Kowalski, A. S.: Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate, J. Geophys. Res.-Biogeo., 114, G04015, https://doi.org/10.1029/2009jg000983, 2009.
Serrano-Ortiz, P., Roland, M., Sanchez-Moral, S., Janssens, I. A., Domingo, F., Godderis, Y., and Kowalski, A. S.: Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: Review and perspectives, Agric. For. Meteorol., 150, 321–329, https://doi.org/10.1016/j.agrformet.2010.01.002, 2010.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 1988.
Subke, J. A., Reichstein, M., and Tenhunen, J. D.: Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany, Soil Biol. Biochem., 35, 1467–1483, https://doi.org/10.1016/s0038-0717(03)00241-4, 2003.
Takle, E. S., Massman, W. J., Brandle, J. R., Schmidt, R. A., Zhou, X. H., Litvina, I. V., Garcia, R., Doyle, G., and Rice, C. W.: Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil, Agric. For. Meteorol., 124, 193–206, https://doi.org/10.1016/j.agrformet.2004.01.014, 2004.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapor transfer, Q. J. R. Meteorol. Soc., 106, 85–100, 1980.
Weisbrod, N., Dragila, M., Nachson, U., and Pillersdorf, M.: Falling through the cracks: the role of fractures in Earth-atmosphere gas exchange, Geophys. Res. Lett., 36, L02401, https://doi.org/10.1029/2008GL036096, 2009.
Were, A., Serrano-Ortiz, P., de Jong, C. M., Villagarcia, L., Domingo, F., and Kowalski, A. S.: Ventilation of subterranean CO2 and Eddy covariance incongruities over carbonate ecosystems, Biogeosciences, 7, 859–867, https://doi.org/10.5194/bg-7-859-2010, 2010.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2 Edn., Academic Press, 649 pp., 2006.
WRB: World Reference Base for Soil Resources 2006, World Soil Resources Reports No. 103. FAO, Rome, 128 pp., 2006.
Altmetrics
Final-revised paper
Preprint