Articles | Volume 10, issue 12
https://doi.org/10.5194/bg-10-8139-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-8139-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa
M. W. Matthews
Institute for Water Studies, Department of Earth Sciences, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
Marine Remote Sensing Unit, Department of Oceanography, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
S. Bernard
Earth Systems Earth Observation, Council for Scientific and Industrial Research, 15 Lower Hope Street, Rosebank, 7700, Cape Town, South Africa
Marine Remote Sensing Unit, Department of Oceanography, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
Related subject area
Biogeophysics: Environmental Optics
Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat
On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance
Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014
A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures
Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance
High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing
Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa
Technical Note: Multispectral lidar time series of pine canopy chlorophyll content
A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Nitrogen food-print: N use related to meat and dairy consumption in France
Remote sensing-based estimation of gross primary production in a subalpine grassland
Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region
Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data
Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Trina Merrick, Stephanie Pau, Matteo Detto, Eben N. Broadbent, Stephanie A. Bohlman, Christopher J. Still, and Angelica M. Almeyda Zambrano
Biogeosciences, 18, 6077–6091, https://doi.org/10.5194/bg-18-6077-2021, https://doi.org/10.5194/bg-18-6077-2021, 2021
Short summary
Short summary
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest health. We investigated drone-based vegetation measurements' abilities to capture different structural and functional elements of a tropical forest. We found that emerging vegetation indices captured greater variability than traditional indices and one new index trends with daily change in carbon flux. These new tools can help improve understanding of tropical forest structure and function.
Xin Yang, Shishi Liu, Yinuo Liu, Xifeng Ren, and Hang Su
Biogeosciences, 16, 2937–2947, https://doi.org/10.5194/bg-16-2937-2019, https://doi.org/10.5194/bg-16-2937-2019, 2019
Short summary
Short summary
The photochemical reflectance index (PRI) derived from remotely sensed data has emerged to be a pre-visual indicator of water stress. This study evaluated the impact of the varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using PRI derived from hyperspectral imagery. Results showed that PRI of the pure shaded leaves may yield inaccurate estimates of plant water status, but the accuracy of RWC predictions was not significantly affected.
Sofia Cerasoli, Manuel Campagnolo, Joana Faria, Carla Nogueira, and Maria da Conceição Caldeira
Biogeosciences, 15, 5455–5471, https://doi.org/10.5194/bg-15-5455-2018, https://doi.org/10.5194/bg-15-5455-2018, 2018
Short summary
Short summary
We compared the ability of in situ spectral and satellite sensors to estimate the productivity of Mediterranean grasslands undergoing different fertilization treatments. The objective of the study was to identify the best set of spectral predictors. In situ CO gas exchange and vegetation reflectance measurements were used for this purpose. Our results show the potential of Sentinel 2 and Landsat 8 satellites to monitor grasslands in support of a sustainable agriculture management.
Philipp M. M. Groetsch, Stefan G. H. Simis, Marieke A. Eleveld, and Steef W. M. Peters
Biogeosciences, 13, 4959–4973, https://doi.org/10.5194/bg-13-4959-2016, https://doi.org/10.5194/bg-13-4959-2016, 2016
Short summary
Short summary
Phytoplankton spring bloom phenology was derived from a 15-year time series (2000–2014) of ship-of-opportunity chlorophyll a fluorescence observations in the Baltic Sea. Bloom peak concentrations have declined over the study period, while bloom duration has increased. It is concluded that nutrient reduction efforts led to decreasing bloom intensity, while changes in Baltic Sea environmental conditions associated with global change corresponded to a lengthening spring bloom period.
Rebecca N. Handcock, D. L. Gobbett, Luciano A. González, Greg J. Bishop-Hurley, and Sharon L. McGavin
Biogeosciences, 13, 4673–4695, https://doi.org/10.5194/bg-13-4673-2016, https://doi.org/10.5194/bg-13-4673-2016, 2016
Short summary
Short summary
Proximal sensors can assist in managing feed in livestock production systems but raw data needs calibration to biophysical values such as biomass and ground cover. Our pilot project monitored tropical pastures for 18 months using digital cameras, multispectral sensors, soil moisture sensors, and field observations. We developed stringent data cleaning rules that are applicable to other sensor projects. Proximal sensors were found to deliver continual and timely pasture data.
T. Tagesson, R. Fensholt, S. Huber, S. Horion, I. Guiro, A. Ehammer, and J. Ardö
Biogeosciences, 12, 4621–4635, https://doi.org/10.5194/bg-12-4621-2015, https://doi.org/10.5194/bg-12-4621-2015, 2015
Short summary
Short summary
Relationships between ecosystem properties of semi-arid savanna and reflected solar radiance between 35 and 1800nm were investigated. Normalised combinations of reflectance for the near infrared, shortwave infrared, and 600 to 700nm were strongly affected by solar and viewing angle effects. Ecosystem properties of savannas were strongly correlated with reflectance at 350-1800nm, and normalised combinations of reflectance were strong predictors of the savanna ecosystem properties.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
L. Peperzak, H. J. van der Woerd, and K. R. Timmermans
Biogeosciences, 12, 1659–1670, https://doi.org/10.5194/bg-12-1659-2015, https://doi.org/10.5194/bg-12-1659-2015, 2015
T. Hakala, O. Nevalainen, S. Kaasalainen, and R. Mäkipää
Biogeosciences, 12, 1629–1634, https://doi.org/10.5194/bg-12-1629-2015, https://doi.org/10.5194/bg-12-1629-2015, 2015
Short summary
Short summary
A hyperspectral lidar produces point clouds with multiple spectral channels (colours) for each point. We measured a pine and used the spectral content to estimate chlorophyll content. We validated these results using chemical laboratory analysis of needles taken from the pine. Our prototype has limitations, but still shows the great potential of coloured point clouds. Potential applications include forestry, security, archaeology and city modelling.
C. Lin, S. C. Popescu, S. C. Huang, P. T. Chang, and H. L. Wen
Biogeosciences, 12, 49–66, https://doi.org/10.5194/bg-12-49-2015, https://doi.org/10.5194/bg-12-49-2015, 2015
N. K. Ganju, J. L. Miselis, and A. L. Aretxabaleta
Biogeosciences, 11, 7193–7205, https://doi.org/10.5194/bg-11-7193-2014, https://doi.org/10.5194/bg-11-7193-2014, 2014
Short summary
Short summary
Light availability to seagrass is an important factor in their success. We deployed instrumentation to measure light in Barnegat Bay, New Jersey, and found lower availability in the southern bay due to high turbidity (suspended sediment), while the northern bay has higher availability. In the northern bay, dissolved organic material and chlorophyll are most responsible for blocking light to the seagrass canopy. We also found that boat wakes do not have a large effect on sediment resuspension.
P. Chatzimpiros and S. Barles
Biogeosciences, 10, 471–481, https://doi.org/10.5194/bg-10-471-2013, https://doi.org/10.5194/bg-10-471-2013, 2013
M. Rossini, S. Cogliati, M. Meroni, M. Migliavacca, M. Galvagno, L. Busetto, E. Cremonese, T. Julitta, C. Siniscalco, U. Morra di Cella, and R. Colombo
Biogeosciences, 9, 2565–2584, https://doi.org/10.5194/bg-9-2565-2012, https://doi.org/10.5194/bg-9-2565-2012, 2012
A. Fujiwara, T. Hirawake, K. Suzuki, and S.-I. Saitoh
Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, https://doi.org/10.5194/bg-8-3567-2011, 2011
C. Höpfner and D. Scherer
Biogeosciences, 8, 3359–3373, https://doi.org/10.5194/bg-8-3359-2011, https://doi.org/10.5194/bg-8-3359-2011, 2011
F. Gao, S. Stanič, K. Bergant, T. Bolte, F. Coren, T.-Y. He, A. Hrabar, J. Jerman, A. Mladenovič, J. Turšič, D. Veberič, and M. Iršič Žibert
Biogeosciences, 8, 2351–2363, https://doi.org/10.5194/bg-8-2351-2011, https://doi.org/10.5194/bg-8-2351-2011, 2011
Cited articles
Aas, E.: Refractive index of phytoplankton derived from its metabolite composition, J. Plankton Res., 18, 2223–2249, https://doi.org/10.1093/plankt/18.12.2223, 1996.
Aden, A. and Kerker, M.: Scattering of electromagnetic waves from two concentric spheres, J. Appl. Phys., 22, 1242–1246, 1951.
Agusti, S. and Phlips, E. J.: Light absorption by cyanobacteria: Implications of the colonial growth form, Limnol. Oceanogr., 37, 434–441, 1992.
Ahn, Y. H., Bricaud, A., and Morel, A.: Light backscattering efficiency and related properties of some phytoplankters, Deep-Sea Res., 39, 1835–1855, 1992.
Arakawa, E. T., Tuminello, P. S., Khare, B. N., and Milham, M. E.: Optical properties of ovalbumin in 0.130–2.50 microm spectral region, Biopolymers, 62, 122–128, https://doi.org/10.1002/bip.1004, 2001.
Bernard, S., Probyn, T. A., and Barlow, R. G.: Measured and modelled optical properties of particulate matter in the southern Benguela, S. Afr. J. Sci., 97, 410–420, 2001.
Bernard, S., Shillington, F. A., and Probyn, T. A.: The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling, Opt. Express, 15, 1995–2007, 2007.
Bernard, S., Probyn, T. A., and Quirantes, A.: Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry, Biogeosciences Discuss., 6, 1497–1563, https://doi.org/10.5194/bgd-6-1497-2009, 2009.
Bidigare, R. R., Schofield, O., and Prezelin, B. B.: Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2)*, Mar. Ecol.-Prog. Ser., 56, 177–188, 1989.
Blank, C. E. and Sánchez-Baracaldo, P.: Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen, Geobiology, 8, 1–23, 2010.
Bricaud, A. and Morel, A.: Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling, Appl. Optics, 25, 571–580, 1986.
Bricaud, A., Morel, A., and Prieur, L.: Optical Efficiency Factors of Some Phytoplankters, Limnol. Oceanogr., 28, 816–832, 1983.
Bricaud, A., Bedhomme, A. L., and Morel, A.: Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation, J. Plankt. Res., 10, 851–873, 1988.
Ciddor, P. E.: Refractive index of air: new equations for the visible and near infrared., Appl. Optics, 35, 1566–1573, 1996.
Clavano, W. R., Boss, E., and Karp-boss, L.: Inherent optical properties of non-spherical marine-like particles – from theory to observation, Oceanogr. Mar. Biol., 45, 1–38, 2007.
Dekker, A.: Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, Ph.D. thesis, Free University, the Netherlands, 1993.
Dekker, A. G., Vos, R. J., and Peters, S. W. M.: Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes, Sci. Total Environ., 268, 197–214, 2001.
Doxaran, D., Cherukuru, N. C., Lavender, S. J., and Moore, G. F.: Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations, Appl. Optics, 43, 5981–5986, 2004.
Dubelaar, G. B. and van der Reijden, C. S.: Size distributions of Microcystis aeruginosa colonies: a flow cytometric approach, Water Sci. Technol., 32, 171–176, 1995.
Dubelaar, G. B., Visser, J. W., and Donze, M.: Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles, Cytometry, 8, 405–412, https://doi.org/10.1002/cyto.990080410, 1987.
Dupouy, C., Neveux, J., Dirberg, G., Rottgers, R., Barboza Tenorio, M. M., and Ouillon, S.: Bio-optical properties of the marine cyanobacteria Trichodesmium spp., J. Appl. Remote Sens., 2, 1–17, https://doi.org/10.1117/1.2839036, 2008.
Fogg, G. E., Stewart, W. D. P., Fay, P., and Walsby, A. E.: Gas vacuoles, in: The blue-green algae, 93–110, Academic Press, London, 1973.
Fuhs, G.: Interferenzmikroskopische beobachtungen an den Polyphosphatkoerpern und gasvacuolen von cyanophyceen, Osterr. Bot. Z., 116, 411–422, 1969.
Ganf, G. G., Oliver, R. L., and Walsby, A. E.: Optical properties of gas-vacuolate cells and colonies of Microcystis in relation to light attenuation in a turbid, stratified reservoir (Mount Bold Reservoir, South Australia), Aust. J. Mar. Fresh. Res., 40, 595–611, 1989.
Golecki, J. R. and Drews, G.: Supramolecular organization and composition of membranes, in: The biology of cyanobacteria, edited by: Carr, N. G. and Whitton, B. A., 6, 125–142, Blackwell Scientific, Berkeley and Los Angeles, 1982.
Gregg, W. W. and Carder, K. L.: A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnol. Oceanogr., 35, 1657–1675, 1990.
Hale, G. M. and Querry, M. R.: Optical Constants of Water in the 200-nm to 200-microm Wavelength Region, Appl. Optics, 12, 555–563, 1973.
Johnsen, G., Samset, O., Granskog, L., and Sakshaug, E.: In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton : taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis, Mar. Ecol. Progr. Ser., 105, 149–157, 1994.
Jost, M. and Jones, D.: Morphological parameters and macro-molecular organization of gas vacuole membranes of Microcystis aeruginosa Kuetz. emend. Elenkin, Can. J. Microbiol., 16, 159–164, 1970.
Jost, M. and Zehnder, A.: Die Gasvakuolen der Blaualge Microcystis aeruginosa, Schweiz Z. Hydrol., 28, 1–3, 1966.
Kirk, J. T. O.: A Theoretical Analysis of the Contribution of Algal Cells to the Attenuation of Light Within Natural Waters. II. Spherical Cells, New Phytol., 75, 21–36, 1975.
Kitchen, J. C. and Zaneveld, J. R. V.: A Three-Layered Sphere Model of the Optical Properties of Phytoplankton, Limnol. Oceanogr., 37, 1680–1690, 1992.
Lehmann, H. and Jost, M.: Kinetics of the assembly of gas vacuoles in the blue-green alga Microcystis aeruginosa Kuetz. emend. Elekin, Arch. Microbiol., 79, 59–68, 1971.
Matthews, M. W.: A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters, Int. J. Remote Sens., 32, 6855–6899, https://doi.org/10.1080/01431161.2010.512947, 2011.
Matthews, M. W. and Bernard, S.: Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs, Remote Sensing, 5, 4370–4404, https://doi.org/10.3390/rs5094370, 2013.
Matthews, M. W., Bernard, S., and Winter, K.: Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS, Remote Sens. Environ., 114, 2070–2087, 2010.
Matthews, M. W., Bernard, S., and Robertson, L.: An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters, Remote Sens. Environ., 124, 637–652, https://doi.org/10.1016/j.rse.2012.05.032, 2012.
Meffert, M. E., Oberhäuser, R., and Overbeck, J.: Morphology and taxonomy of Oscillatoria redekei (Cyanophyta), Brit. Phycol. J., 16, 107–114, 1981.
Mitchell, B. G., Kahru, M., Wieland, J., and Stramska, M.: Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, in: Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols, edited by: Mueller, J. L., Fargion, G. S., and McClain, C. R., chap. 4, National Aeronautical and Space Administration, Greenbelt, Maryland, 2003.
Morel, A. and Bricaud, A.: Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results, Can. B. Fish. Aquat. Sci, 214, 521–559, 1986.
Morel, A., Ahn, Y.-H., Partensky, F., Vaulot, D., and Claustre, H.: Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation, J. Mar. Res., 51, 617–649, https://doi.org/10.1357/0022240933223963, 1993.
Mueller, J. L., Morel, A., Frouin, R., Davis, C., Arnone, R., Carder, K., Lee, Z., Steward, R., Hooker, S., Mobley, C. D., McLean, S., Holben, B., Miller, M., Pietras, C., Knobelspiesse, K. D., Fargion, G. S., Porter, J., and Voss, K.: Radiometric Measurements and Data Analysis Protocols, in: Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III:, edited by: Mueller J. L., Fargion, G. S., and McClain, C. R., vol. III, p. 78, NASA, Goddard Space Flight Space Center, Greenbelt, Maryland, 2003.
Ogawa, T., Sekine, T., and Aiba, S.: Reappraisal of the so-called light shielding of gas vacuoles in Microcystis Aeruginosa, Arch. Microbiol., 122, 57–60, 1979.
Petzold, T. J.: Volume scattering functions for selected ocean waters, Tech. rep., Scripps Institution of Oceanography Visibility Laboratory, San Diego, California, \urlprefixhttp://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0753474, 1972.
Porter, J. and Jost, M.: Physiological effects of the presence and absence of gas vacuoles in the blue-green alga, Microcystis aeruginosa Kuetz. emend. Elenkin, Arch. Microbiol., 110, 225–231, 1976.
Quinby-Hunt, M., Hunt, A., Lofftus, K., and Shapiro, D.: Polarized-light scattering studies of marine chlorella, Limnol. Oceanogr., 34, 1587–1600, 1989.
Quirantes, A. and Bernard, S.: Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers, J. Quant. Spectrosc. Ra., 100, 315–324, 2006.
Rajagopal, S., Sicora, C., Várkonyi, Z., Mustárdy, L., and Mohanty, P.: Protective effect of supplemental low intensity white light on ultraviolet-B exposure-induced impairment in cyanobacterium Spirulina platensis: formation of air vacuoles as a possible protective measure., Photosynth. Res., 85, 181–189, https://doi.org/10.1007/s11120-005-2439-6, 2005.
Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., and Soyeux, E.: Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin, Remote Sens. Environ., 112, 4009–4019, 2008.
Raven, J. A.: The Role of Vacuoles, New Phytol., 106, 357–422, 1987.
Retalis, A., Hadjimitsis, D. G., Michaelides, S., Tymvios, F., Chrysoulakis, N., Clayton, C. R. I., and Themistocleous, K.: Comparison of aerosol optical thickness with in situ visibility data over Cyprus, Nat. Hazards Earth Syst. Sci., 10, 421–428, https://doi.org/10.5194/nhess-10-421-2010, 2010.
Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A., and Leedale, G. F.: On the annual cycle of the blue-green alga microcystis aeruginosa kutz. Emend. Elenkin, Philos. T. Roy. Soc. B, 293, 419–477, 1981.
Robarts, A. R. D., Zohary, T., and Robarts, R. D.: Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa), J. Ecol., 72, 1001–1017, 1984.
Roesler, C.: Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique, Limnol. Oceanogr. 43, 1649–1660, 1998.
Rottgers, R., Doerffer, R., McKee, D., and Schonfeld, W.: Algorithm Theoretical Basis Document: The Water Optical Properties Processor (WOPP), Tech. rep., Helmholtz-Zentrum Geesthacht, University of Strathclyde, Geesthacht, 2011.
Sartory, D. P. and Grobbelaar, J. U.: Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis, Hydrobiologia, 114, 177–187, 1984.
Schalles, J. F., Gitelson, A. A., Yacobi, Y. Z., and Kroenke, A. E.: Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake, J. Phycol., 34, 383–390, 1998.
Schreurs, R.: Light scattering by algae: fitting experimental data using Lorenz-Mie theory, Ph.D. thesis, Vrije University, Amsterdam, 1996.
Shear, H. and Walsby, A. E.: An investigation into the possible light-shielding role of gas vacuoles in a planktonic blue-green alga, Eur. J. Phycol., 10, 241–251, https://doi.org/10.1080/00071617500650231, 1975.
Smith, R. and Peat, A.: Comparative structure of the gas-vacuoles of blue-green algae, Arch. Microbiol., 57, 111–122, 1967.
Spinrad, R. W. and Brown, J. F.: Relative real refractive index of marine microorganisms: a technique for flow cytometric estimation, Appl. Optics, 25, 1930–1934, 1986.
Stramski, D. and Wozniak, S. B.: On the role of colloidal particles in light scattering in the ocean, Limnol. Oceanogr., 50, 1581–1591, 2005.
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Appl. Optics, 40, 2929–2945, 2001.
Svensen, O., Frette, O., and Erga, S. R.: Scattering properties of microalgae: the effect of cell size and cell wall, Appl. Optics, 46, 5762–5769, 2007.
Toon, O. B. and Ackerman, T. P.: Algorithms for the calculation of scattering by stratified spheres, Appl. Optics, 20, 3657–3660, 1981.
Vaillancourt, R. D.: Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy, J. Plankt. Res., 26, 191–212, https://doi.org/10.1093/plankt/fbh012, 2004.
van baalen, C. and Brown, R. M.: The ultrastructure of the marine blue green alga, Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles, and cylindrical bodies, Arch. Hydrobiol., 69, 79–91, 1969.
van Liere, L. and Walsby, A. E.: Interactions of cyanobacteria with light, in: The biology of cyanobacteria, edited by: Carr, N. G. and Whitton, B. A., chap. 2, 9–46, Blackwell Scientific, Berkeley and Los Angeles, 1982.
Volten, A. H., Haan, J. F. D., Hovenier, J. W., Schreurs, R., Vassen, W., Dekker, A. G., Hoogenboom, J., Charlton, F., and Wouts, R.: Laboratory Measurements of Angular Distributions of Light Scattered by Phytoplankton and Silt, Limnol. Oceanogr., 43, 1180–1197, 1998.
Šmarda, J.: Cell ultrastructure changes accompanying the annual life cycle of the cyanobacterium Microcystis aeruginosa, Algological Studies, 130, 27–38, https://doi.org/10.1127/1864-1318/2009/0130-0027, 2009.
Waaland, J. R., Waaland, S. D., and Branton, D.: Gas vacuoles: Light shielding in blue-green algae, J. Cell Biol., 48, 212–215, 1971.
Walsby, A. E.: Gas vesicles, Microbiol. Rev., 58, 94–144, https://doi.org/10.1016/j.tim.2006.01.002, 1994.
Wang, Q., Sun, D., Li, Y., Le, C., and Huang, C.: Mechanisms of Remote-Sensing Reflectance Variability and Its Relation to Bio-Optical Processes in a Highly Turbid Eutrophic Lake: Lake Taihu (China), IEEE T. Geosci. Remote, 48, 575–584, https://doi.org/10.1109/TGRS.2009.2027316, 2010.
Whitmire, A. L., Pegau, W. S., Karp-boss, L., Boss, E., and Cowles, T. J.: Spectral backscattering properties of marine phytoplankton cultures, Opt. Express, 18, 1680–1690, https://doi.org/10.1364/OE.18.015073, 2010.
Witkowski, K., Krol, T., Zielinski, A., and Kuten, E.: A Light-Scattering Matrix for Unicellular Marine Phytoplankton, Limnol. Oceanogr., 43, 859–869, 1998.
Zhang, X., Lewis, M., Lee, M., Johnson, B., and Korotaev, G.: The volume scattering function of natural bubble populations, Limnol. Oceanogr. 47, 1273–1282, https://doi.org/10.4319/lo.2002.47.5.1273, 2002.
Zhang, Y., Yin, Y., Wang, M., and Liu, X.: Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes : field and experimental evidence, Opt. Express, 20, 11882–11898, https://doi.org/10.1364/OE.20.011882, 2012.
Zhou, W., Wang, G., Sun, Z., Cao, W., Xu, Z., Hu, S., and Zhao, J.: Variations in the optical scattering properties of phytoplankton cultures, Opt. Express, 20, 11189–11206, 2012.
Zimba, P. V. and Gitelson, A.: Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization, Aquaculture, 256, 272–286, 2006.