Bernard, S., Probyn, T. A., and Quirantes, A.: Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry, Biogeosciences Discuss., 6, 1497–1563, https://doi.org/10.5194/bgd-6-1497-2009, 2009.
Blank, C. E. and Sánchez-Baracaldo, P.: Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen, Geobiology, 8, 1–23, 2010.
Bricaud, A. and Morel, A.: Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling, Appl. Optics, 25, 571–580, 1986.
Ciddor, P. E.: Refractive index of air: new equations for the visible and near infrared., Appl. Optics, 35, 1566–1573, 1996.
Dekker, A.: Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, Ph.D. thesis, Free University, the Netherlands, 1993.
Dekker, A. G., Vos, R. J., and Peters, S. W. M.: Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes, Sci. Total Environ., 268, 197–214, 2001.
Doxaran, D., Cherukuru, N. C., Lavender, S. J., and Moore, G. F.: Use of a Spectralon panel to measure the downwelling irradiance signal: case studies and recommendations, Appl. Optics, 43, 5981–5986, 2004.
Dubelaar, G. B., Visser, J. W., and Donze, M.: Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles, Cytometry, 8, 405–412, https://doi.org/10.1002/cyto.990080410, 1987.
Dupouy, C., Neveux, J., Dirberg, G., Rottgers, R., Barboza Tenorio, M. M., and Ouillon, S.: Bio-optical properties of the marine cyanobacteria Trichodesmium spp., J. Appl. Remote Sens., 2, 1–17, https://doi.org/10.1117/1.2839036, 2008.
Fogg, G. E., Stewart, W. D. P., Fay, P., and Walsby, A. E.: Gas vacuoles, in: The blue-green algae, 93–110, Academic Press, London, 1973.
Fuhs, G.: Interferenzmikroskopische beobachtungen an den Polyphosphatkoerpern und gasvacuolen von cyanophyceen, Osterr. Bot. Z., 116, 411–422, 1969.
Ganf, G. G., Oliver, R. L., and Walsby, A. E.: Optical properties of gas-vacuolate cells and colonies of Microcystis in relation to light attenuation in a turbid, stratified reservoir (Mount Bold Reservoir, South Australia), Aust. J. Mar. Fresh. Res., 40, 595–611, 1989.
Golecki, J. R. and Drews, G.: Supramolecular organization and composition of membranes, in: The biology of cyanobacteria, edited by: Carr, N. G. and Whitton, B. A., 6, 125–142, Blackwell Scientific, Berkeley and Los Angeles, 1982.
Johnsen, G., Samset, O., Granskog, L., and Sakshaug, E.: In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton : taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis, Mar. Ecol. Progr. Ser., 105, 149–157, 1994.
Jost, M. and Jones, D.: Morphological parameters and macro-molecular organization of gas vacuole membranes of Microcystis aeruginosa Kuetz. emend. Elenkin, Can. J. Microbiol., 16, 159–164, 1970.
Kirk, J. T. O.: A Theoretical Analysis of the Contribution of Algal Cells to the Attenuation of Light Within Natural Waters. II. Spherical Cells, New Phytol., 75, 21–36, 1975.
Lehmann, H. and Jost, M.: Kinetics of the assembly of gas vacuoles in the blue-green alga Microcystis aeruginosa Kuetz. emend. Elekin, Arch. Microbiol., 79, 59–68, 1971.
Matthews, M. W.: A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters, Int. J. Remote Sens., 32, 6855–6899, https://doi.org/10.1080/01431161.2010.512947, 2011.
Matthews, M. W. and Bernard, S.: Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs, Remote Sensing, 5, 4370–4404, https://doi.org/10.3390/rs5094370, 2013.
Matthews, M. W., Bernard, S., and Winter, K.: Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS, Remote Sens. Environ., 114, 2070–2087, 2010.
Matthews, M. W., Bernard, S., and Robertson, L.: An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters, Remote Sens. Environ., 124, 637–652, https://doi.org/10.1016/j.rse.2012.05.032, 2012.
Mitchell, B. G., Kahru, M., Wieland, J., and Stramska, M.: Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, in: Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols, edited by: Mueller, J. L., Fargion, G. S., and McClain, C. R., chap. 4, National Aeronautical and Space Administration, Greenbelt, Maryland, 2003.
Morel, A. and Bricaud, A.: Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results, Can. B. Fish. Aquat. Sci, 214, 521–559, 1986.
Morel, A., Ahn, Y.-H., Partensky, F., Vaulot, D., and Claustre, H.: Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation, J. Mar. Res., 51, 617–649, https://doi.org/10.1357/0022240933223963, 1993.
Mueller, J. L., Morel, A., Frouin, R., Davis, C., Arnone, R., Carder, K., Lee, Z., Steward, R., Hooker, S., Mobley, C. D., McLean, S., Holben, B., Miller, M., Pietras, C., Knobelspiesse, K. D., Fargion, G. S., Porter, J., and Voss, K.: Radiometric Measurements and Data Analysis Protocols, in: Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III:, edited by: Mueller J. L., Fargion, G. S., and McClain, C. R., vol. III, p. 78, NASA, Goddard Space Flight Space Center, Greenbelt, Maryland, 2003.
Petzold, T. J.: Volume scattering functions for selected ocean waters, Tech. rep., Scripps Institution of Oceanography Visibility Laboratory, San Diego, California, \urlprefixhttp://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0753474, 1972.
Porter, J. and Jost, M.: Physiological effects of the presence and absence of gas vacuoles in the blue-green alga, Microcystis aeruginosa Kuetz. emend. Elenkin, Arch. Microbiol., 110, 225–231, 1976.
Quinby-Hunt, M., Hunt, A., Lofftus, K., and Shapiro, D.: Polarized-light scattering studies of marine chlorella, Limnol. Oceanogr., 34, 1587–1600, 1989.
Quirantes, A. and Bernard, S.: Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers, J. Quant. Spectrosc. Ra., 100, 315–324, 2006.
Rajagopal, S., Sicora, C., Várkonyi, Z., Mustárdy, L., and Mohanty, P.: Protective effect of supplemental low intensity white light on ultraviolet-B exposure-induced impairment in cyanobacterium Spirulina platensis: formation of air vacuoles as a possible protective measure., Photosynth. Res., 85, 181–189, https://doi.org/10.1007/s11120-005-2439-6, 2005.
Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., and Soyeux, E.: Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin, Remote Sens. Environ., 112, 4009–4019, 2008.
Raven, J. A.: The Role of Vacuoles, New Phytol., 106, 357–422, 1987.
Retalis, A., Hadjimitsis, D. G., Michaelides, S., Tymvios, F., Chrysoulakis, N., Clayton, C. R. I., and Themistocleous, K.: Comparison of aerosol optical thickness with in situ visibility data over Cyprus, Nat. Hazards Earth Syst. Sci., 10, 421–428, https://doi.org/10.5194/nhess-10-421-2010, 2010.
Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A., and Leedale, G. F.: On the annual cycle of the blue-green alga microcystis aeruginosa kutz. Emend. Elenkin, Philos. T. Roy. Soc. B, 293, 419–477, 1981.
Robarts, A. R. D., Zohary, T., and Robarts, R. D.: Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa), J. Ecol., 72, 1001–1017, 1984.
Roesler, C.: Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique, Limnol. Oceanogr. 43, 1649–1660, 1998.
Rottgers, R., Doerffer, R., McKee, D., and Schonfeld, W.: Algorithm Theoretical Basis Document: The Water Optical Properties Processor (WOPP), Tech. rep., Helmholtz-Zentrum Geesthacht, University of Strathclyde, Geesthacht, 2011.
Schalles, J. F., Gitelson, A. A., Yacobi, Y. Z., and Kroenke, A. E.: Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake, J. Phycol., 34, 383–390, 1998.
Schreurs, R.: Light scattering by algae: fitting experimental data using Lorenz-Mie theory, Ph.D. thesis, Vrije University, Amsterdam, 1996.
Shear, H. and Walsby, A. E.: An investigation into the possible light-shielding role of gas vacuoles in a planktonic blue-green alga, Eur. J. Phycol., 10, 241–251, https://doi.org/10.1080/00071617500650231, 1975.
Smith, R. and Peat, A.: Comparative structure of the gas-vacuoles of blue-green algae, Arch. Microbiol., 57, 111–122, 1967.
Spinrad, R. W. and Brown, J. F.: Relative real refractive index of marine microorganisms: a technique for flow cytometric estimation, Appl. Optics, 25, 1930–1934, 1986.
Vaillancourt, R. D.: Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy, J. Plankt. Res., 26, 191–212, https://doi.org/10.1093/plankt/fbh012, 2004.
van baalen, C. and Brown, R. M.: The ultrastructure of the marine blue green alga, Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles, and cylindrical bodies, Arch. Hydrobiol., 69, 79–91, 1969.
van Liere, L. and Walsby, A. E.: Interactions of cyanobacteria with light, in: The biology of cyanobacteria, edited by: Carr, N. G. and Whitton, B. A., chap. 2, 9–46, Blackwell Scientific, Berkeley and Los Angeles, 1982.
Volten, A. H., Haan, J. F. D., Hovenier, J. W., Schreurs, R., Vassen, W., Dekker, A. G., Hoogenboom, J., Charlton, F., and Wouts, R.: Laboratory Measurements of Angular Distributions of Light Scattered by Phytoplankton and Silt, Limnol. Oceanogr., 43, 1180–1197, 1998.
Šmarda, J.: Cell ultrastructure changes accompanying the annual life cycle of the cyanobacterium Microcystis aeruginosa, Algological Studies, 130, 27–38, https://doi.org/10.1127/1864-1318/2009/0130-0027, 2009.
Walsby, A. E.: Gas vesicles, Microbiol. Rev., 58, 94–144, https://doi.org/10.1016/j.tim.2006.01.002, 1994.
Wang, Q., Sun, D., Li, Y., Le, C., and Huang, C.: Mechanisms of Remote-Sensing Reflectance Variability and Its Relation to Bio-Optical Processes in a Highly Turbid Eutrophic Lake: Lake Taihu (China), IEEE T. Geosci. Remote, 48, 575–584, https://doi.org/10.1109/TGRS.2009.2027316, 2010.
Whitmire, A. L., Pegau, W. S., Karp-boss, L., Boss, E., and Cowles, T. J.: Spectral backscattering properties of marine phytoplankton cultures, Opt. Express, 18, 1680–1690, https://doi.org/10.1364/OE.18.015073, 2010.
Witkowski, K., Krol, T., Zielinski, A., and Kuten, E.: A Light-Scattering Matrix for Unicellular Marine Phytoplankton, Limnol. Oceanogr., 43, 859–869, 1998.
Zhang, X., Lewis, M., Lee, M., Johnson, B., and Korotaev, G.: The volume scattering function of natural bubble populations, Limnol. Oceanogr. 47, 1273–1282, https://doi.org/10.4319/lo.2002.47.5.1273, 2002.
Zhang, Y., Yin, Y., Wang, M., and Liu, X.: Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes : field and experimental evidence, Opt. Express, 20, 11882–11898, https://doi.org/10.1364/OE.20.011882, 2012.
Zhou, W., Wang, G., Sun, Z., Cao, W., Xu, Z., Hu, S., and Zhao, J.: Variations in the optical scattering properties of phytoplankton cultures, Opt. Express, 20, 11189–11206, 2012.
Zimba, P. V. and Gitelson, A.: Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization, Aquaculture, 256, 272–286, 2006.