Articles | Volume 11, issue 20
https://doi.org/10.5194/bg-11-5687-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-5687-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia)
C. Monnin
Géosciences Environnement Toulouse, Université de Toulouse/CNRS/IRD, 14, Avenue Edouard Belin, 31400 Toulouse, France
V. Chavagnac
Géosciences Environnement Toulouse, Université de Toulouse/CNRS/IRD, 14, Avenue Edouard Belin, 31400 Toulouse, France
C. Boulart
Géosciences Environnement Toulouse, Université de Toulouse/CNRS/IRD, 14, Avenue Edouard Belin, 31400 Toulouse, France
now at: Centre IFREMER Brest, Géosciences Marines, Laboratoire Géochimie Métallogénie, B.P. 70, 29280 Plouzané France
B. Ménez
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS UMR7154, 1 rue Jussieu, 75238 Paris CEDEX 5, France
M. Gérard
Institut de minéralogie et de physique des milieux condensés, Université Pierre et Marie Curie – 4 place Jussieu, 75005 Paris, France
E. Gérard
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS UMR7154, 1 rue Jussieu, 75238 Paris CEDEX 5, France
C. Pisapia
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS UMR7154, 1 rue Jussieu, 75238 Paris CEDEX 5, France
M. Quéméneur
Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille, France
G. Erauso
Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille, France
A. Postec
Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille, France
L. Guentas-Dombrowski
Toulon Université, Laboratoire des Matériaux Polymères Interfaces Environnement Marin (MAPIEM), ISITV – Avenue Georges Pompidou BP56 – 83162 La Valette-du-Var CEDEX, France
UR227 COREUS Ecosystèmes des communautés récifales et leurs usages dans le Pacifique, Centre IRD de Nouméa, BP A5, 98848 Nouméa, New Caledonia
C. Payri
UR227 COREUS Ecosystèmes des communautés récifales et leurs usages dans le Pacifique, Centre IRD de Nouméa, BP A5, 98848 Nouméa, New Caledonia
B. Pelletier
Grand Observatoire de l'environnement et de la biodiversité terrestre et marine du Pacifique Sud (GIS GOPS), Centre IRD de Nouméa, BP A5, 98848 Nouméa, New Caledonia
Related authors
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
G. Lamarche, S. Popinet, B. Pelletier, J. Mountjoy, J. Goff, S. Delaux, and J. Bind
Nat. Hazards Earth Syst. Sci., 15, 1763–1784, https://doi.org/10.5194/nhess-15-1763-2015, https://doi.org/10.5194/nhess-15-1763-2015, 2015
Short summary
Short summary
The research investigates the tsunami hazard in the remote French territory of Wallis and Futuna, Southwest Pacific, using numerical computer modelling of tsunami generation, propagation and inundation. Wallis consists of the inhabited island of Uvéa that is surrounded by a lagoon delimited by a barrier reef, whereas Futuna and the island of Alofi form the Horn Archipelago located ca. 240 km east. Futuna and Alofi are surrounded by a narrow fringing reef and emerge from the North Fiji Transform.
E. Couradeau, K. Benzerara, E. Gérard, I. Estève, D. Moreira, R. Tavera, and P. López-García
Biogeosciences, 10, 5255–5266, https://doi.org/10.5194/bg-10-5255-2013, https://doi.org/10.5194/bg-10-5255-2013, 2013
Related subject area
Astrobiology and Exobiology: Extreme Environments, Brines & Hydrothermal
Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge
Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring
Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge
Novel water source for endolithic life in the hyperarid core of the Atacama Desert
Experimental fossilisation of viruses from extremophilic Archaea
Yann Lelièvre, Jozée Sarrazin, Julien Marticorena, Gauthier Schaal, Thomas Day, Pierre Legendre, Stéphane Hourdez, and Marjolaine Matabos
Biogeosciences, 15, 2629–2647, https://doi.org/10.5194/bg-15-2629-2018, https://doi.org/10.5194/bg-15-2629-2018, 2018
Short summary
Short summary
The Main Endeavour vent field, a Marine Protected Area, is a target site for the cabled observatory Ocean Networks Canada, providing unprecedented opportunities to better understand vent ecosystem functioning. We report the diversity and food webs of six faunal communities associated with siboglinid tubeworms of the Grotto edifice. Better knowledge of the ecological functioning of these communities will help in assessing the role of the MPA as a management tool for hydrothermal vents ecosystems.
Shun Chen, Xiaotong Peng, Hengchao Xu, and Kaiwen Ta
Biogeosciences, 13, 2051–2060, https://doi.org/10.5194/bg-13-2051-2016, https://doi.org/10.5194/bg-13-2051-2016, 2016
Short summary
Short summary
The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, in combination of culture-independent and culture-dependent approaches, we provide direct evidences that ammonia-oxidizing Archaea (AOA) are indeed responsible for the major portion of ammonia oxidation in high-temperature hot springs.
L. A. Ziolkowski, N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater
Biogeosciences, 10, 7661–7675, https://doi.org/10.5194/bg-10-7661-2013, https://doi.org/10.5194/bg-10-7661-2013, 2013
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013, https://doi.org/10.5194/bg-10-5639-2013, 2013
A. Bourbonnais, S. K. Juniper, D. A. Butterfield, A. H. Devol, M. M. M. Kuypers, G. Lavik, S. J. Hallam, C. B. Wenk, B. X. Chang, S. A. Murdock, and M. F. Lehmann
Biogeosciences, 9, 4661–4678, https://doi.org/10.5194/bg-9-4661-2012, https://doi.org/10.5194/bg-9-4661-2012, 2012
J. Wierzchos, A. F. Davila, I. M. Sánchez-Almazo, M. Hajnos, R. Swieboda, and C. Ascaso
Biogeosciences, 9, 2275–2286, https://doi.org/10.5194/bg-9-2275-2012, https://doi.org/10.5194/bg-9-2275-2012, 2012
F. Orange, A. Chabin, A. Gorlas, S. Lucas-Staat, C. Geslin, M. Le Romancer, D. Prangishvili, P. Forterre, and F. Westall
Biogeosciences, 8, 1465–1475, https://doi.org/10.5194/bg-8-1465-2011, https://doi.org/10.5194/bg-8-1465-2011, 2011
Cited articles
Arcilla, C. A., Pascua, C. S., and Alexander, W. R.: Hyperalkaline groundwaters and tectonism in the Philippines: significance to natural Carbon Capture and Sequestration, in: 10th International Conference on Greenhouse Gas Control Technologies, Energy Procedia, edited by: Gale, J., Hendriks, C. and Turkenberg, W., 5093–5101, 2011.
Avias, J.: Overthrust structure of the main ultrabasic new caledonian massives, Tectonophysics, 4, 531–541, 1967.
Barnes, I. and O'Neil, J.: The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States, Geol. Soc. Am. Bull., 80, 1947–1960, 1969.
Barnes, I., O'Neil, J. R., and Trescases, J. J.: Present day serpentinization in New Caledonia, Oman and Yugoslavia, Geochim. Cosmochim. Ac., 42, 144–145, 1978.
Bénézeth, P., Saldi, G. D., Dandurand, J.-L., and Schott, J.: Experimental determination of the solubility product of magnesite at 50 to 200 °C, Chem. Geol., 286, 21–31, 2011.
Besson, P., Degboe, J., Berge, B., Chavagnac, V., Fabre, S., and Berger, G.: Ca, Na, K and Mg concentrations in seawater by inductively coupled plasma atomic emission spectrometry analyses: applications to IAPSO standard seawater, hydrothermal fluids and synthetic seawater solutions, geostandards and geoanalytical research, 38, 355–362, 2014.
Bonvallot, J., Gay, J. C., and Habert, E.: Atlas de la Nouvelle Calédonie, Nouméa, Marseille, 2012.
Boschetti, T. and Toscani, L.: Springs and streams of the Taro-Ceno Valleys (Northern Apennine, Italy): Reaction path modeling of waters interacting with serpentinized ultramafic rocks, Chem. Geol., 257, 76–91, 2008.
Brazelton, W. J., Schrenk, M. O., Kelley, D. S., and Baross, J. A.: Methane- and sulfur-metabolizing microbial communities dominate the Lost City Hydrothermal Field Ecosystem, Appl. Environ. Microb., 72, 6257–6270, 2006.
Brazelton, W. J., Ludwig, K. A., Sogin, M. L., Andreishcheva, E. N., Kelley, D. S., Shen, C.-C., Edwards, R. L., and Baross, J. A.: Archaea and bacteria with surprising microdiversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys, P. Natl. Acad. Sci. USA, 107, 1612–1617, 2010.
Chardon, D. and Chevillotte, V.: Morphotectonic evolution of the New Caledonia ridge (Pacific Southwest) from post-obduction tectonosedimentary record, Tectonophysics, 420, 473–491, 2006.
Chardon, D., Austin, J. A., Cabioch, G., Pelletier, B. S., S., and Sage, F.: Neogene history of the northeastern New Caledonia continental margin from multichannel reflection seismic profiles, C. R. Geosci., 340, 68–73, 2008.
Chavagnac, V., Ceuleneer, G., Monnin, C., Lansac, B., Hoareau, G., and Boulart , C.: Mineralogical assemblages forming at hyper-alkaline warm springs hosted on ultramafic rocks: a case study of Oman and Ligurian ophiolites, Geochem. Geophy. Geosy., 14, 2474–2495, 2013a.
Chavagnac, V., Monnin, C., Ceuleneer, G., Boulart, C., and Hoareau, G.: Characterization of hyperalkaline fluids produced by low temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites, Geochem. Geophy. Geosy., 14, 2496–2522, 2013b.
Cipolli, F., Gambardella, B., Marini, L., Ottonello, G., and Vetuschi Zuccolini, M.: Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers, Appl. Geochem., 19, 787–802, 2004.
Cluzel, D., Aitchison, J. C., and Picard, C.: Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications, Tectonophysics, 340, 23–59, 2001.
Collot, J. Y., Missegue, F., and Malahoff, A.: Anomalies gravimétriques et structure de la croûte dans la région de la Nouvelle-Calédonie: enracinement des péridotites, in: Contribution à l'étude Géodynamique du Sud-Ouest Pacifique, edited by: Equipe de Géologie-Géophysique ORSTOM Nouméa, Trav. Doc. ORSTOM, 147, 549–564, 1982.
Cox, M. E., Launay, J., and Paris, J.: Geochemistry of low temperature geothermal systems in New Caledonia, in: Pacific Geothermal conference and 4th NZ Geothermal Workshop, 453–459, 1982.
Flamand, B.: Les pentes externes du récif barrière de la Grande-Terre de Nouvelle-Calédonie: morphologie, lithologie, contrôle de la tectonique et de l'eustatisme, Université de Bretagne occidentale, Brest, France, 2006.
Fruh-Green, G. L., Kelley, D. S., Bernasconi, S. M., Karson, J. A., Ludwig, K. A., Butterfield, D. A., Boschi, C., and Proskurowski, G.: 30 000 years of hydrothermal activity at the Lost City vent field, Science, 301, 495–498, 2003.
Fujii, N., Arcilla, C. A., Yamakawa, M., Pascua, C., Namiki, K., Sato, T., Shikazono, N., and Alexander, W. R.: Natural Analogue Studies of Bentonite Reaction under Hyperalkaline Conditions: Overview of Ongoing Work at the Zambales Ophiolite, Philippines, Proceedings of the 13th International Conference on Environmental Remediation and Radioactive Waste Management, 2010, Vol 2. Am. Soc. Mechanic. Eng., New York, 41–50, 2010.
Garnier, J.: Voyage autour du monde, La Nouvelle-Calédonie (côte orientale), Plon, Paris, 364 pp., 1871.
Guillon, J. H.: Les massifs péridotitiques de Nouvelle-Calédonie: type d'appareil ultrabasique stratiforme de chaîne récente, 1975.
Harvie, C. E., Moller, N., and Weare, J. H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Ac., 48, 723–751, 1984.
Holm, N. G.: The significance of Mg in prebiotic geochemistry, Geobiology, 10, 269–279, 2012.
Kelley, D. S., Karson, J. A., Blackman, D. K., Fruh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T., and Rivizzigno, P.: An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N, Nature, 412, 145–149, 2001.
Kelley, D. S., Karson, J. A., Fruh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., and Jakuba, M.: A serpentinite-hosted ecosystem: the lost city hydrothermal field, Science, 307, 1428–1434, 2005.
Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: progress with an unknown process, Annu. Rev. Microbiol., 63, 311–334, 2009.
Königsberger, E., Königsberger, L.-C., and Gamsjäger, H.: Low-temperature thermodynamic model for the system \chemNa_2CO_3-MgCO3-CaCO3-H2O, Geochim. Cosmochim. Ac., 63, 3105–3119, 1999.
Krause, S., Liebetrau, V., Gorb, S., Sanchez-Roman, M., McKenzie, J. A., and Treude, T.: Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma, Geology, 40, 587–590, 2012.
Lagabrielle, Y. and Chauvet, A.: The role of extensional tectonics in shaping Cenozoic New-Caledonia, B. Soc. Geol. Fr., 179, 315–329, 2008.
Lagabrielle, Y., Maurizot, P., Lafoy, Y., Cabioch, G., Pelletier, B., Regnier, M., Wabete, I., and Calmant, S.: Post-Eocene extensional tectonics in Southern New Caledonia (SW Pacific): insights from onshore fault analysis and offshore seismic data, Tectonophysics, 403, 1–28, 2005.
Lambert, I. and Clever, H. L.: Alkaline Earth Hydroxides in Water and Aqueous Solutions, IUPAC solubility data series, 52, 220 pp., 1992.
Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S., and Lilley, M. D.: Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field, Geochim. Cosmochim. Ac., 74, 941–952, 2010.
Launay, J. and Fontes, J. C.: Les sources thermales de Prony (Nouvelle Calédonie) et leurs précipités chimiques, exemple de formation de brucite primaire, Geologie de la France, 1, 83–100, 1985.
Magnier, Y.: Une source thermale sous-marine à Prony: le récif de l'aiguille, Rossiniana, 3, 16–17, 1979.
Maurizot, P. and Vendé-Leclerc, M.: Carte géologique de la Nouvelle-Calédonie au 1/500 000, Direction de l'Industrie, des Mines et de l'Energie, Service de la Géologie de Nouvelle-Calédonie, Bureau de Recherches Géologiques et Minières, Nouméa, 2009.
Millero, F. J.: Chemical oceanography, in: Marine Sciences series, third edition, edited by: Kennish, M. K., CRC Taylor and Francis, p. 496., 2006.
Monnin, C. and Hoareau, G.: Chemical equilibrium between aqueous fluids and minerals in the marine environment, in: Ion-partitioning in ambient temperature aqueous systems, edited by: Prieto, M. and Stoll, H., European Mineralogical Union, 227–257, 2010.
Monnin, C., Pelletier, B., Boulart, C., and Quéméneur, M.: Suivi temporel de la température et de la composition des eaux et des gaz des sources hyperalcalines de la Baie de Prony (Nouvelle-Calédonie), Grand Observatoire de l'Environnement et de la Biodoversité (GOPS), Nouméa, Nouvelle Calédonie, unpublished report, 2013.
Morrill, P. L., Kuenen, J. G., Johnson, O. J., Suzuki, S., Rietze, A., Sessions, A. L., Fogel, M. L., and Nealson, K. H.: Geochemistry and geobiology of a present-day serpentinization site in California: the Cedars, Geochim. Cosmochim. Ac., 109, 222–240, 2013.
Morse, J. W., Arvidson, R. S., and Luttge, A.: Calcium carbonate formation and dissolution, Chem. Rev., 107, 342–381, 2007.
Mottl, M. J.: Higest pH?, available at: http://www.geochemsoc.org/publications/geochemicalnews/gn141oct09/highestph.htm, 2009.
Mottl, M. J., Wheat, C. G., Fryer, P., Gharib, J., and Martin, J. B.: Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate, Geochim. Cosmochim. Ac., 68, 4915–4933, 2004.
Muntener, O.: Serpentine and serpentinization: a link between planet formation and life, Geology, 38, 959–960, 2010.
Neal, C. and Stanger, G.: Calcium and magnesium-hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization, Mineral. Mag., 48, 237–241, 1984a.
Neal, C. and Stanger, G.: Past and present serpentinization of ultramafic rocks; an example from the Semail ophiolite nappe of Northern Oman, in: Proceedings of the NATO Advanced Research Workshop on the The Chemistry of Weathering, edited by: Drever, T., Reidel Publishing Company, 249–275, 1984b.
Neal, C. and Shand, P.: Spring and surface water quality of the Cyprus ophiolites, Hydrol. Earth Syst. Sci., 6, 797–817, https://doi.org/10.5194/hess-6-797-2002, 2002.
Ouillon, S., Douillet, P., Lefebvre, J. P., Le Gendre, R., Jouon, A., Bonneton, P., Fernandez, J. M., Chevillon, C., Magand, O., Lefevre, J., Le Hir, P., Laganier, R., Dumas, F., Marchesiello, P., Belmadani, A., Andrefouet, S., Panche, J. Y., and Fichez, R.: Circulation and suspended sediment transport in a coral reef lagoon: the south-west lagoon of New Caledonia, Mar. Pollut. Bull., 61, 269–296, 2010.
Pelletier, B. and Chevillon, C.: Morphologies sous marines particulières et constructions chimiques et biologiques dans le lagon sud-ouest de Nouvelle-Calédonie: les aiguilles hydrothermales de la baie du Prony et les monticules d'huîtres du banc Gail, Abstract book, Congrès Biodec, Nouméa (New Caledonia), 84–85, 2006.
Pelletier, B., Chevillon, C., Menou, J.L., Butscher, J., Folcher, E., Geoffray, C., Bore, J. M., Panché, J. Y., and Perrier, J.: Plongées, forage et cartographie Baie du Prony et Banc Gail, lagon Sud de Nouvelle-Calédonie, NO, ALIS, 13–17 Juin 2004 et cartographie baie du Prony NO, ALIS, 25–26 Septembre 2005, 2006.
Perner, M., Hansen, M., Seifert, R., Strauss, H., Koschinsky, A., and Petersen, S.: Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments, Geobiology, 11, 340–355, 2013.
Pirard, C., Hermann, J., and O'Neill, H. S.: Petrology and geochemistry of the crust-mantle boundary in a nascent arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific, J. Petrol., 54, 1759–1792, 2013.
Pisapia, C. and the HYDROPRONY scientific team: The alkaline hydrothermal field of the Prony Bay, New Caledonia, in: Serpentine Days workshop, Porquerolles, France, 2012.
Pisapia, C., Gerard, E., Gerard, M., and Menez, B.: Organomineralization drives early chimney edification at the hyperalkaline hydrothermal field of the Prony Bay (New Caledonia), Goldschmidt Conference, Florence (Italy), Mineral. Mag., 2013.
Pisapia, C., Gérard, E., Gérard, M., Erauso, G., Postec, A., Monnin, C., Payri, C., Pelletier, B., and Ménez, B.: Organomineralization drives early chimney edification at the hyperalkaline hydrothermal field of the Prony Bay (New Caledonia), P. Natl. Acad. Sci. USA, in preparation, 2014.
Postec, A., Quéméneur, M., Bes, M., Mei, N., Benaissa , F., Payri, C., Pelletier, B., Monnin, C., Dombrowsky, L., Ollivier, B., Gérard, E., Pisapia, C., Gérard, M., Ménez, B., and Erauso, G.: Microbial communities in a serpentinite-hosted ecosystem: the Prony hydrothermal field, New Caledonia, PLOS ONE, submitted, 2014.
Power, I. M., Wilson, S. A., Thom, J. M., Dipple, G. M., and Southam, G.: Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada, Geochem. T., 8, https://doi.org/10.1186/1467-4866-8-13, 2007.
Prokurovski, G.: Abiogenic hydrocarbon production at the biosphere–geosphere interface via serpentinization reactions, in: Hanbook of Hydrocarbon and Lipid Micobiology, edited by: Timmis, K. N., Springer, 216–231, 2010.
Quéméneur, M., Bes, M., Postec, A., Meil, N., Hamelin, J., Monnin, C., Chavagnac, V., Payri, C., Pelletier, B., Donbrowski, L., Gérard, M., Pisapia, C., Gérard, E., Ménez, B., Ollivier, B., and Erauso, G.,: Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia, Environ. Microbiol., https://doi.org/10.1111/1758-2229.12184, 2014.
Quesnel, B., Gautier, P., Boulvais, P., Cathelineau, M., Maurizot, P., Cluzel, D., Ulrich, M., Guillot, S., Lesimple, S., and Couteau, C.: Syn-tectonic, meteoric water–derived carbonation of the New Caledonia peridotite nappe, Geology, 41, 1063–1066, 2013.
Rinder, T., Dietzel, M., and Leis, A.: Calcium carbonate scaling under alkaline conditions – case studies and hydrochemical modelling, Appl. Geochem., 35, 132–141, 2013.
Roberts, J. A., Kenward, P. A., Fowle, D. A., Goldstein, R. H., Gonzalez, L. A., and Moore, D. S.: Surface chemistry allows for abiotic precipitation of dolomite at low temperature, P. Natl. Acad. Sci. USA, 110, 14540–14545, 2013.
Russell, M. J.: The alkaline solution to the emergence of life: energy, entropy and early evolution, Acta Biotheor., 55, 133–179, 2007.
Russell, M. J., Hall, A. J., and Martin, W.: Serpentinization as a source of energy at the origin of life, Geobiology, 8, 355–371, 2010.
Sader, J. A., Leybourne, M. I., McClenaghan, B., and Hamilton, M. S.: Low-temperature serpentinization processes and kimberlite groundwater signatures in the Kirkland Lake and Lake Timiskiming kimberlite fields, Ontario, Canada: implications for diamond exploration, Geochemistry-Explor. Env. A., 7, 3–21, 2007.
Schrenk, M. O., Kelley, D. S., Bolton, S. A., and Baross, J. A.: Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge, Environ Microbiol., 6, 1086–1095, 2004.
Stanger, G.: The Hydrology of the Oman Mountains, Ph.D. thesis, The Open University, UK, 1985.
Szponar, N., Brazelton, W. J., Schrenk, M. O., Bower, D. M., Steele, A., and Morrill, P. L.: Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue, Icarus, 224, 286–296, 2012.
Toner, B. M., Lesniewski, R. A., Marlow, J. J., Briscoe, L. J., Santelli, C. M., Bach, W., Orcutt, B. N., and Edwards, K. J.: Mineralogy drives bacterial biogeography of hydrothermally inactive seafloor sulfide deposits, Geomicrobiol. J., 30, 313–326, 2013.
Xiong, Y. L.: Thermodynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation, Aquat. Geochem., 14, 223–238, 2008.
Xu, J., Yan, C., Zhang, F. F., Konishi, H., Xu, H. F., and Teng, H. H.: Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems, P. Natl. Acad. Sci. USA, 110, 17750–17755, 2013.
Altmetrics
Final-revised paper
Preprint