Articles | Volume 11, issue 23
https://doi.org/10.5194/bg-11-6791-2014
https://doi.org/10.5194/bg-11-6791-2014
Research article
 | 
08 Dec 2014
Research article |  | 08 Dec 2014

Modeling the impediment of methane ebullition bubbles by seasonal lake ice

S. Greene, K. M. Walter Anthony, D. Archer, A. Sepulveda-Jauregui, and K. Martinez-Cruz

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Katey Walter Anthony on behalf of the Authors (23 Sep 2014)  Author's response 
ED: Publish subject to technical corrections (19 Oct 2014) by Victor Brovkin
AR by Katey Walter Anthony on behalf of the Authors (22 Oct 2014)  Manuscript 
Download
Short summary
Methane (CH4) bubbles emitted from the anoxic sediments of northern lakes constitute a significant methane flux to the atmosphere, but entrapment by seasonal lake ice impedes bubble release to the atmosphere. Using numerical modeling and field measurement of a lake in Alaska, we found that 80% of CH4 in ice-trapped bubbles dissolves into the water column. Microbes consume half of that CH4. Emission by bubbling is greatest in summer but continues in winter through some open holes in lake ice.
Altmetrics
Final-revised paper
Preprint