Articles | Volume 11, issue 23
https://doi.org/10.5194/bg-11-6827-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-6827-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
M. Réjou-Méchain
CORRESPONDING AUTHOR
Laboratoire Evolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier, 31062 Toulouse, France
H. C. Muller-Landau
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Balboa, Ancon, Panama
M. Detto
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Balboa, Ancon, Panama
S. C. Thomas
University of Toronto, Faculty of Forestry, Toronto, Canada
T. Le Toan
Centre d'Etudes Spatiales de la Biosphère, UMR5126 CNRS, CNES, Université Paul Sabatier, IRD, 31401 Toulouse, France
S. S. Saatchi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
J. S. Barreto-Silva
Instituto Amazónico de Investigaciones Científicas SINCHI, Avenida Vásquez Cobo entre calles 15 y 16, Leticia, Amazonas, Colombia
N. A. Bourg
Conservation Ecology Center Smithsonian Conservation Biology Institute National Zoological Park 1500 Remount Rd., Front Royal, VA 22630, USA
S. Bunyavejchewin
National Parks, Wildlife and Plant Conservation Department, Research Office, Chatuchak, Bangkok 10900, Thailand
N. Butt
ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, St. Lucia, 4072, Australia
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
W. Y. Brockelman
Ecology Lab, Bioresources Technology Unit, 113 Science Park, Paholyothin Road, Khlong 1, Khlongluang, Pathum Thani 12120, Thailand
M. Cao
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
D. Cárdenas
Instituto Amazónico de Investigaciones Científicas SINCHI, Calle 20 No. 5 -44. Bogotá, Colombia
J.-M. Chiang
Department of Life Science, Tunghai University, Taichung 40704, Taiwan
G. B. Chuyong
Department of Botany and Plant Physiology, University of Buea, PO Box 63, Buea, Cameroon
K. Clay
Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA
R. Condit
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Balboa, Ancon, Panama
H. S. Dattaraja
Center for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
S. J. Davies
Center for Tropical Forest Science, Smithsonian Institution Global Earth Observatory, Smithsonian Tropical Research Institute, P.O. Box 37012, Washington, DC 20012, USA
A. Duque
Departamento de Ciencias Forestales, Universidad Nacional de Colombia, Sede Medellín. Calle 59A No 63-20, Medellín, Colombia
S. Esufali
Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
C. Ewango
Centre de Formation et de Recherche en Conservation Forestière (CEFRECOF), Wildlife Conservation Society, Kinshasa, DR Congo
R. H. S. Fernando
Royal Botanical Garden, Peradeniya, Sri Lanka
C. D. Fletcher
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
I. A. U. N. Gunatilleke
Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
Z. Hao
State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
K. E. Harms
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
T. B. Hart
Project TL2, Kinshasa, DR Congo
B. Hérault
Cirad, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP701, 97310 Kourou, French Guiana
R. W. Howe
Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI 54311, USA
S. P. Hubbell
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Balboa, Ancon, Panama
D. J. Johnson
Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA
D. Kenfack
CTFS-Arnold Arboretum Office, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
A. J. Larson
Department of Forest Management, College of Forestry and Conservation, The University of Montana, Missoula, MT 59812, USA
L. Lin
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
Y. Lin
Department of Life Science, Tunghai University, Taichung 40704, Taiwan
J. A. Lutz
Wildland Resources Department, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA
J.-R. Makana
Wildlife Conservation Society – DRC Program, Kinshasa, DR Congo
Y. Malhi
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
T. R. Marthews
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
R. W. McEwan
Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA
S. M. McMahon
Smithsonian Tropical Research Institute {&} Smithsonian Environmental Research Center, Edgewater, Maryland, USA
W. J. McShea
Conservation Ecology Center Smithsonian Conservation Biology Institute National Zoological Park 1500 Remount Rd., Front Royal, VA 22630, USA
R. Muscarella
Department of Ecology, Evolution {&} Environmental Biology, Columbia University, New York, NY, USA
A. Nathalang
Ecology Lab, Bioresources Technology Unit, 113 Science Park, Paholyothin Road, Khlong 1, Khlongluang, Pathum Thani 12120, Thailand
N. S. M. Noor
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
C. J. Nytch
Department of Environmental Science, University of Puerto Rico, Box 70377, Rio Piedras, San Juan, 00936-8377, Puerto Rico
A. A. Oliveira
Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 04582050 São Paulo, Brazil
R. P. Phillips
Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA
N. Pongpattananurak
Department of Conservation, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
R. Punchi-Manage
Department of Ecosystem Modelling, University of Göttingen, Göttingen, Germany
R. Salim
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
J. Schurman
University of Toronto, Faculty of Forestry, Toronto, Canada
R. Sukumar
Center for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
H. S. Suresh
Center for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
U. Suwanvecho
Ecology Lab, Bioresources Technology Unit, 113 Science Park, Paholyothin Road, Khlong 1, Khlongluang, Pathum Thani 12120, Thailand
D. W. Thomas
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
J. Thompson
Department of Environmental Science, University of Puerto Rico, Box 70377, Rio Piedras, San Juan, 00936-8377, Puerto Rico
Centre for Ecology {&} Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, Scotland EH26 0QB, UK
M. Uríarte
Department of Ecology, Evolution {&} Environmental Biology, Columbia University, New York, NY, USA
R. Valencia
Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Apartado 17-01-2184, Quito, Ecuador
A. Vicentini
Instituto Nacional de Pesquisas da Amazônia – Manaus, AM, Brazil
A. T. Wolf
Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI 54311, USA
S. Yap
Institute of Biology University of the Philippines Diliman, Quezon City 1101, Philippines
Z. Yuan
State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
C. E. Zartman
Instituto Nacional de Pesquisas da Amazônia – Manaus, AM, Brazil
J. K. Zimmerman
Department of Environmental Science, University of Puerto Rico, Box 70377, Rio Piedras, San Juan, 00936-8377, Puerto Rico
J. Chave
Laboratoire Evolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier, 31062 Toulouse, France
Viewed
Total article views: 10,694 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Apr 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
6,911 | 3,477 | 306 | 10,694 | 184 | 204 |
- HTML: 6,911
- PDF: 3,477
- XML: 306
- Total: 10,694
- BibTeX: 184
- EndNote: 204
Total article views: 5,540 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Dec 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,446 | 1,907 | 187 | 5,540 | 162 | 196 |
- HTML: 3,446
- PDF: 1,907
- XML: 187
- Total: 5,540
- BibTeX: 162
- EndNote: 196
Total article views: 5,154 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Apr 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,465 | 1,570 | 119 | 5,154 | 22 | 8 |
- HTML: 3,465
- PDF: 1,570
- XML: 119
- Total: 5,154
- BibTeX: 22
- EndNote: 8
Cited
110 citations as recorded by crossref.
- Structural complexity and large‐sized trees explain shifting species richness and carbon relationship across vegetation types S. Mensah et al. 10.1111/1365-2435.13585
- Fragmentation is the main driver of residual forest aboveground biomass in West African low forest-high deforestation landscapes S. Traoré et al. 10.1016/j.tfp.2023.100477
- Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation P. Zhao et al. 10.3390/rs8060469
- Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data J. Hernández-Stefanoni et al. 10.1186/s13021-020-00151-6
- The use of GEDI canopy structure for explaining variation in tree species richness in natural forests S. Marselis et al. 10.1088/1748-9326/ac583f
- Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia M. Nesha et al. 10.1016/j.jag.2020.102158
- Use of Sentinel-2 Data to Improve Multivariate Tree Species Composition in a Forest Resource Inventory J. Malcolm et al. 10.3390/rs13214297
- Spatial Distribution of Carbon Stored in Forests of the Democratic Republic of Congo L. Xu et al. 10.1038/s41598-017-15050-z
- Estimating vegetation structure and aboveground carbon storage in Western Australia using GEDI LiDAR, Landsat and Sentinel data N. Lutz et al. 10.1088/2752-664X/ad7f5a
- Mapping the accumulation of woody biomass in Mediterranean beech forests by the combination of BIOME-BGC and ancillary data F. Lombardi et al. 10.1139/cjfr-2016-0162
- Biomass and InSAR height relationship in a dense tropical forest S. Solberg et al. 10.1016/j.rse.2017.02.010
- A Novel Framework for Forest Above-Ground Biomass Inversion Using Multi-Source Remote Sensing and Deep Learning J. Zhang et al. 10.3390/f15030456
- A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps A. Araza et al. 10.1016/j.rse.2022.112917
- An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots V. Avitabile & A. Camia 10.1016/j.foreco.2017.11.047
- Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome B. Zimbres et al. 10.1016/j.foreco.2021.119615
- Exploring characteristics of national forest inventories for integration with global space-based forest biomass data K. Nesha et al. 10.1016/j.scitotenv.2022.157788
- Influence of footprint size and geolocation error on the precision of forest biomass estimates from space-borne waveform LiDAR M. Milenković et al. 10.1016/j.rse.2017.08.014
- Global importance of large‐diameter trees J. Lutz et al. 10.1111/geb.12747
- A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories F. Fischer et al. 10.1016/j.rse.2020.112056
- Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations M. Santoro et al. 10.1016/j.rse.2021.112846
- Precision of subnational forest AGB estimates within the Peruvian Amazonia using a global biomass map N. Málaga et al. 10.1016/j.jag.2022.103102
- Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest J. Chiang et al. 10.1007/s00442-016-3717-z
- Sentinel-1 soil moisture at 1 km resolution: a validation study A. Balenzano et al. 10.1016/j.rse.2021.112554
- Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion P. Rodríguez-Veiga et al. 10.3390/rs12152380
- Fire enhances forest degradation within forest edge zones in Africa Z. Zhao et al. 10.1038/s41561-021-00763-8
- Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density J. Kellner et al. 10.1029/2022EA002516
- GEDI launches a new era of biomass inference from space R. Dubayah et al. 10.1088/1748-9326/ac8694
- Assessing the Predictive Power of Democratic Republic of Congo’s National Spaceborne Biomass Map over Independent Test Samples A. Lamulamu et al. 10.3390/rs14164126
- The Evolution of Long-Term Data for Forestry: Large Temperate Research Plots in an Era of Global Change J. Lutz 10.3955/046.089.0306
- Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands M. Brandt et al. 10.1038/s41559-018-0530-6
- Making the US national forest inventory spatially contiguous and temporally consistent Y. Yu et al. 10.1088/1748-9326/ac6b47
- Estimating aboveground biomass density using hybrid statistical inference with GEDI lidar data and Paraguay’s national forest inventory E. Bullock et al. 10.1088/1748-9326/acdf03
- Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing Y. Yu et al. 10.3390/rs14122828
- MODIS Based Estimation of Forest Aboveground Biomass in China G. Yin et al. 10.1371/journal.pone.0130143
- Making (remote) sense of lianas G. van der Heijden et al. 10.1111/1365-2745.13844
- Detecting and predicting forest degradation: A comparison of ground surveys and remote sensing in Tanzanian forests A. Ahrends et al. 10.1002/ppp3.10189
- Challenges to aboveground biomass prediction from waveform lidar J. Bruening et al. 10.1088/1748-9326/ac3cec
- Aboveground Biomass Mapping Using ALOS-2/PALSAR-2 Time-Series Images for Borneo's Forest M. Hayashi et al. 10.1109/JSTARS.2019.2957549
- Inverting Aboveground Biomass–Canopy Texture Relationships in a Landscape of Forest Mosaic in the Western Ghats of India Using Very High Resolution Cartosat Imagery S. Pargal et al. 10.3390/rs9030228
- Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries P. Ploton et al. 10.5194/bg-13-1571-2016
- Advancing Fire Science with Large Forest Plots and a Long-Term Multidisciplinary Approach J. Lutz et al. 10.3390/fire1010005
- An analysis of forest biomass sampling strategies across scales J. Hetzer et al. 10.5194/bg-17-1673-2020
- Estimation of grassland aboveground biomass combining optimal derivative and raw reflectance vegetation indices at peak productive growth stage X. Tong et al. 10.1080/10106049.2023.2186497
- Assessment of Forest Biomass Estimation from Dry and Wet SAR Acquisitions Collected during the 2019 UAVSAR AM-PM Campaign in Southeastern United States U. Khati et al. 10.3390/rs12203397
- Performance of non-parametric algorithms for spatial mapping of tropical forest structure L. Xu et al. 10.1186/s13021-016-0062-9
- Shrub Communities, Spatial Patterns, and Shrub-Mediated Tree Mortality following Reintroduced Fire in Yosemite National Park, California, USA J. Lutz et al. 10.4996/fireecology.1301104
- LiDAR-based individual tree AGB modeling of Pinus kesiya var. langbianensis by incorporating spatial structure Z. Liu et al. 10.1016/j.ecolind.2024.112973
- Predicting individual pixel error in remote sensing soft classification R. Khatami et al. 10.1016/j.rse.2017.07.028
- Spatial Downscaling of Forest Above-Ground Biomass Distribution Patterns Based on Landsat 8 OLI Images and a Multiscale Geographically Weighted Regression Algorithm N. Wang et al. 10.3390/f14030526
- Large-diameter trees buffer monsoonal changes to tree biomass over two decades C. Ku et al. 10.1007/s11258-023-01360-y
- Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach P. Bispo et al. 10.3390/rs12172685
- Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden M. Santoro et al. 10.1016/j.rse.2020.112235
- An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR A. Bouvet et al. 10.1016/j.rse.2017.12.030
- Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest M. Réjou-Méchain et al. 10.1016/j.rse.2015.08.001
- Tree Crowns Cause Border Effects in Area-Based Biomass Estimations from Remote Sensing N. Knapp et al. 10.3390/rs13081592
- In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions N. Labriere et al. 10.1109/JSTARS.2018.2851606
- Mapping Forest Ecosystem Biomass Density for Xiangjiang River Basin by Combining Plot and Remote Sensing Data and Comparing Spatial Extrapolation Methods J. Zhu et al. 10.3390/rs9030241
- Global biomass maps can increase the precision of (sub)national aboveground biomass estimates: A comparison across tropical countries N. Málaga et al. 10.1016/j.scitotenv.2024.174653
- A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets Y. Zhang et al. 10.1080/15481603.2021.2023842
- An overview of existing and promising technologies for national forest monitoring M. Henry et al. 10.1007/s13595-015-0463-z
- An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products Y. Zhang et al. 10.3390/rs12244015
- Effects of topography on tropical forest structure depend on climate context R. Muscarella et al. 10.1111/1365-2745.13261
- Nonparametric quantification of uncertainty in multistep upscaling approaches: A case study on estimating forest biomass in the Brazilian Amazon D. Valle et al. 10.1016/j.srs.2024.100180
- Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning T. Jucker et al. 10.5194/bg-15-3811-2018
- Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR P. Molina et al. 10.3390/rs8010009
- Evaluating the potential of full‐waveform lidar for mapping pan‐tropical tree species richness S. Marselis et al. 10.1111/geb.13158
- The Forest Observation System, building a global reference dataset for remote sensing of forest biomass D. Schepaschenko et al. 10.1038/s41597-019-0196-1
- Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them M. Réjou-Méchain et al. 10.1007/s10712-019-09532-0
- Large-diameter trees, snags, and deadwood in southern Utah, USA J. Lutz et al. 10.1186/s13717-020-00275-0
- Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa G. Imani et al. 10.1371/journal.pone.0179653
- Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010 M. Collins & E. Mitchard 10.5194/bg-12-6637-2015
- Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision E. Næsset et al. 10.1016/j.rse.2016.01.006
- Current and potential carbon stock in the forest communities of the Białowieża Biosphere Reserve J. Matuszkiewicz et al. 10.1016/j.foreco.2021.119702
- Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest Aboveground Biomass Map Y. Zhang & S. Liang 10.3390/rs12162559
- Multi-Objective Support Vector Regression Reduces Systematic Error in Moderate Resolution Maps of Tree Species Abundance K. Legaard et al. 10.3390/rs12111739
- Comprehensive propagation of errors for the prediction of woody biomass S. Roxburgh & K. Paul 10.1111/2041-210X.14471
- Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests M. Phua et al. 10.1016/j.foreco.2017.10.007
- Design and performance of the Climate Change Initiative Biomass global retrieval algorithm M. Santoro et al. 10.1016/j.srs.2024.100169
- Cost implications of cluster plot design choices for precise estimation of forest attributes in landscapes and forests of varying heterogeneity A. Lister & L. Leites 10.1139/cjfr-2020-0509
- Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states N. Knapp et al. 10.1016/j.rse.2017.11.018
- Estimation of the total dry aboveground biomass in the tropical forests of Congo Basin using optical, LiDAR, and radar data P. Migolet et al. 10.1080/15481603.2022.2026636
- Forest structure predicts aboveground biomass better than community-weighted mean of traits, functional diversity, topography, and soil in a tropical forest across spatial scales T. Simmavong et al. 10.1016/j.foreco.2024.122457
- Sentinel-1 Coherence for Mapping Above-Ground Biomass in Semiarid Forest Areas O. Cartus et al. 10.1109/LGRS.2021.3071949
- Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI H. Tang et al. 10.1016/j.rse.2023.113571
- Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+ S. Solberg et al. 10.1186/s13021-015-0023-8
- Tree aboveground biomass and species richness of the mature tropical forests of Darien, Panama, and their role in global climate change mitigation and biodiversity conservation J. Mateo‐Vega et al. 10.1111/csp2.42
- Forest aboveground biomass stock and resilience in a tropical landscape of Thailand N. Jha et al. 10.5194/bg-17-121-2020
- Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory E. Rödig et al. 10.1111/geb.12639
- Opportunities and challenges for an Indonesian forest monitoring network F. Brearley et al. 10.1007/s13595-019-0840-0
- Estimation of Rubber Plantation Biomass Based on Variable Optimization from Sentinel-2 Remote Sensing Imagery Y. Fu et al. 10.3390/f15060900
- The Importance of Consistent Global Forest Aboveground Biomass Product Validation L. Duncanson et al. 10.1007/s10712-019-09538-8
- Seeing Central African forests through their largest trees J. Bastin et al. 10.1038/srep13156
- Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome S. Guitet et al. 10.1371/journal.pone.0138456
- Impact of deforestation and climate on the Amazon Basin’s above-ground biomass during 1993–2012 J. Exbrayat et al. 10.1038/s41598-017-15788-6
- Plot-level variability in biomass for tropical forest inventory designs N. Picard et al. 10.1016/j.foreco.2018.07.052
- CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change K. Anderson‐Teixeira et al. 10.1111/gcb.12712
- A network to understand the changing socio‐ecology of the southern African woodlands (SEOSAW): Challenges, benefits, and methods 10.1002/ppp3.10168
- Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation P. Patterson et al. 10.1088/1748-9326/ab18df
- Error in the estimation of emission factors for forest degradation in central Africa N. Picard et al. 10.1007/s10310-015-0510-5
- Lianas and soil nutrients predict fine‐scale distribution of above‐ground biomass in a tropical moist forest A. Ledo et al. 10.1111/1365-2745.12635
- A methodological framework to assess the carbon balance of tropical managed forests C. Piponiot et al. 10.1186/s13021-016-0056-7
- Ground Data are Essential for Biomass Remote Sensing Missions J. Chave et al. 10.1007/s10712-019-09528-w
- Co-variation in biomass and environment at the scale of a forest concession in central Africa G. Mankou et al. 10.1017/S0266467417000177
- Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship B. Buma et al. 10.1371/journal.pone.0212526
- Geomorphic control of rain-forest floristic composition in French Guiana: more than a soil filtering effect? S. Guitet et al. 10.1017/S0266467415000620
- Effect of ground surface interpolation methods on the accuracy of forest attribute modelling using unmanned aerial systems-based digital aerial photogrammetry A. Graham et al. 10.1080/01431161.2019.1694722
- Decrease of L-band SAR backscatter with biomass of dense forests S. Mermoz et al. 10.1016/j.rse.2014.12.019
- SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana D. Ho Tong Minh et al. 10.1016/j.rse.2015.12.037
- Limited carbon and biodiversity co‐benefits for tropical forest mammals and birds L. Beaudrot et al. 10.1890/15-0935
- Spatially explicit analysis of field inventories for national forest carbon monitoring D. Marvin & G. Asner 10.1186/s13021-016-0050-0
90 citations as recorded by crossref.
- Structural complexity and large‐sized trees explain shifting species richness and carbon relationship across vegetation types S. Mensah et al. 10.1111/1365-2435.13585
- Fragmentation is the main driver of residual forest aboveground biomass in West African low forest-high deforestation landscapes S. Traoré et al. 10.1016/j.tfp.2023.100477
- Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation P. Zhao et al. 10.3390/rs8060469
- Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data J. Hernández-Stefanoni et al. 10.1186/s13021-020-00151-6
- The use of GEDI canopy structure for explaining variation in tree species richness in natural forests S. Marselis et al. 10.1088/1748-9326/ac583f
- Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia M. Nesha et al. 10.1016/j.jag.2020.102158
- Use of Sentinel-2 Data to Improve Multivariate Tree Species Composition in a Forest Resource Inventory J. Malcolm et al. 10.3390/rs13214297
- Spatial Distribution of Carbon Stored in Forests of the Democratic Republic of Congo L. Xu et al. 10.1038/s41598-017-15050-z
- Estimating vegetation structure and aboveground carbon storage in Western Australia using GEDI LiDAR, Landsat and Sentinel data N. Lutz et al. 10.1088/2752-664X/ad7f5a
- Mapping the accumulation of woody biomass in Mediterranean beech forests by the combination of BIOME-BGC and ancillary data F. Lombardi et al. 10.1139/cjfr-2016-0162
- Biomass and InSAR height relationship in a dense tropical forest S. Solberg et al. 10.1016/j.rse.2017.02.010
- A Novel Framework for Forest Above-Ground Biomass Inversion Using Multi-Source Remote Sensing and Deep Learning J. Zhang et al. 10.3390/f15030456
- A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps A. Araza et al. 10.1016/j.rse.2022.112917
- An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots V. Avitabile & A. Camia 10.1016/j.foreco.2017.11.047
- Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome B. Zimbres et al. 10.1016/j.foreco.2021.119615
- Exploring characteristics of national forest inventories for integration with global space-based forest biomass data K. Nesha et al. 10.1016/j.scitotenv.2022.157788
- Influence of footprint size and geolocation error on the precision of forest biomass estimates from space-borne waveform LiDAR M. Milenković et al. 10.1016/j.rse.2017.08.014
- Global importance of large‐diameter trees J. Lutz et al. 10.1111/geb.12747
- A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories F. Fischer et al. 10.1016/j.rse.2020.112056
- Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations M. Santoro et al. 10.1016/j.rse.2021.112846
- Precision of subnational forest AGB estimates within the Peruvian Amazonia using a global biomass map N. Málaga et al. 10.1016/j.jag.2022.103102
- Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest J. Chiang et al. 10.1007/s00442-016-3717-z
- Sentinel-1 soil moisture at 1 km resolution: a validation study A. Balenzano et al. 10.1016/j.rse.2021.112554
- Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion P. Rodríguez-Veiga et al. 10.3390/rs12152380
- Fire enhances forest degradation within forest edge zones in Africa Z. Zhao et al. 10.1038/s41561-021-00763-8
- Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density J. Kellner et al. 10.1029/2022EA002516
- GEDI launches a new era of biomass inference from space R. Dubayah et al. 10.1088/1748-9326/ac8694
- Assessing the Predictive Power of Democratic Republic of Congo’s National Spaceborne Biomass Map over Independent Test Samples A. Lamulamu et al. 10.3390/rs14164126
- The Evolution of Long-Term Data for Forestry: Large Temperate Research Plots in an Era of Global Change J. Lutz 10.3955/046.089.0306
- Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands M. Brandt et al. 10.1038/s41559-018-0530-6
- Making the US national forest inventory spatially contiguous and temporally consistent Y. Yu et al. 10.1088/1748-9326/ac6b47
- Estimating aboveground biomass density using hybrid statistical inference with GEDI lidar data and Paraguay’s national forest inventory E. Bullock et al. 10.1088/1748-9326/acdf03
- Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing Y. Yu et al. 10.3390/rs14122828
- MODIS Based Estimation of Forest Aboveground Biomass in China G. Yin et al. 10.1371/journal.pone.0130143
- Making (remote) sense of lianas G. van der Heijden et al. 10.1111/1365-2745.13844
- Detecting and predicting forest degradation: A comparison of ground surveys and remote sensing in Tanzanian forests A. Ahrends et al. 10.1002/ppp3.10189
- Challenges to aboveground biomass prediction from waveform lidar J. Bruening et al. 10.1088/1748-9326/ac3cec
- Aboveground Biomass Mapping Using ALOS-2/PALSAR-2 Time-Series Images for Borneo's Forest M. Hayashi et al. 10.1109/JSTARS.2019.2957549
- Inverting Aboveground Biomass–Canopy Texture Relationships in a Landscape of Forest Mosaic in the Western Ghats of India Using Very High Resolution Cartosat Imagery S. Pargal et al. 10.3390/rs9030228
- Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries P. Ploton et al. 10.5194/bg-13-1571-2016
- Advancing Fire Science with Large Forest Plots and a Long-Term Multidisciplinary Approach J. Lutz et al. 10.3390/fire1010005
- An analysis of forest biomass sampling strategies across scales J. Hetzer et al. 10.5194/bg-17-1673-2020
- Estimation of grassland aboveground biomass combining optimal derivative and raw reflectance vegetation indices at peak productive growth stage X. Tong et al. 10.1080/10106049.2023.2186497
- Assessment of Forest Biomass Estimation from Dry and Wet SAR Acquisitions Collected during the 2019 UAVSAR AM-PM Campaign in Southeastern United States U. Khati et al. 10.3390/rs12203397
- Performance of non-parametric algorithms for spatial mapping of tropical forest structure L. Xu et al. 10.1186/s13021-016-0062-9
- Shrub Communities, Spatial Patterns, and Shrub-Mediated Tree Mortality following Reintroduced Fire in Yosemite National Park, California, USA J. Lutz et al. 10.4996/fireecology.1301104
- LiDAR-based individual tree AGB modeling of Pinus kesiya var. langbianensis by incorporating spatial structure Z. Liu et al. 10.1016/j.ecolind.2024.112973
- Predicting individual pixel error in remote sensing soft classification R. Khatami et al. 10.1016/j.rse.2017.07.028
- Spatial Downscaling of Forest Above-Ground Biomass Distribution Patterns Based on Landsat 8 OLI Images and a Multiscale Geographically Weighted Regression Algorithm N. Wang et al. 10.3390/f14030526
- Large-diameter trees buffer monsoonal changes to tree biomass over two decades C. Ku et al. 10.1007/s11258-023-01360-y
- Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach P. Bispo et al. 10.3390/rs12172685
- Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden M. Santoro et al. 10.1016/j.rse.2020.112235
- An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR A. Bouvet et al. 10.1016/j.rse.2017.12.030
- Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest M. Réjou-Méchain et al. 10.1016/j.rse.2015.08.001
- Tree Crowns Cause Border Effects in Area-Based Biomass Estimations from Remote Sensing N. Knapp et al. 10.3390/rs13081592
- In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions N. Labriere et al. 10.1109/JSTARS.2018.2851606
- Mapping Forest Ecosystem Biomass Density for Xiangjiang River Basin by Combining Plot and Remote Sensing Data and Comparing Spatial Extrapolation Methods J. Zhu et al. 10.3390/rs9030241
- Global biomass maps can increase the precision of (sub)national aboveground biomass estimates: A comparison across tropical countries N. Málaga et al. 10.1016/j.scitotenv.2024.174653
- A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets Y. Zhang et al. 10.1080/15481603.2021.2023842
- An overview of existing and promising technologies for national forest monitoring M. Henry et al. 10.1007/s13595-015-0463-z
- An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products Y. Zhang et al. 10.3390/rs12244015
- Effects of topography on tropical forest structure depend on climate context R. Muscarella et al. 10.1111/1365-2745.13261
- Nonparametric quantification of uncertainty in multistep upscaling approaches: A case study on estimating forest biomass in the Brazilian Amazon D. Valle et al. 10.1016/j.srs.2024.100180
- Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning T. Jucker et al. 10.5194/bg-15-3811-2018
- Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR P. Molina et al. 10.3390/rs8010009
- Evaluating the potential of full‐waveform lidar for mapping pan‐tropical tree species richness S. Marselis et al. 10.1111/geb.13158
- The Forest Observation System, building a global reference dataset for remote sensing of forest biomass D. Schepaschenko et al. 10.1038/s41597-019-0196-1
- Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them M. Réjou-Méchain et al. 10.1007/s10712-019-09532-0
- Large-diameter trees, snags, and deadwood in southern Utah, USA J. Lutz et al. 10.1186/s13717-020-00275-0
- Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa G. Imani et al. 10.1371/journal.pone.0179653
- Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010 M. Collins & E. Mitchard 10.5194/bg-12-6637-2015
- Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision E. Næsset et al. 10.1016/j.rse.2016.01.006
- Current and potential carbon stock in the forest communities of the Białowieża Biosphere Reserve J. Matuszkiewicz et al. 10.1016/j.foreco.2021.119702
- Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest Aboveground Biomass Map Y. Zhang & S. Liang 10.3390/rs12162559
- Multi-Objective Support Vector Regression Reduces Systematic Error in Moderate Resolution Maps of Tree Species Abundance K. Legaard et al. 10.3390/rs12111739
- Comprehensive propagation of errors for the prediction of woody biomass S. Roxburgh & K. Paul 10.1111/2041-210X.14471
- Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests M. Phua et al. 10.1016/j.foreco.2017.10.007
- Design and performance of the Climate Change Initiative Biomass global retrieval algorithm M. Santoro et al. 10.1016/j.srs.2024.100169
- Cost implications of cluster plot design choices for precise estimation of forest attributes in landscapes and forests of varying heterogeneity A. Lister & L. Leites 10.1139/cjfr-2020-0509
- Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states N. Knapp et al. 10.1016/j.rse.2017.11.018
- Estimation of the total dry aboveground biomass in the tropical forests of Congo Basin using optical, LiDAR, and radar data P. Migolet et al. 10.1080/15481603.2022.2026636
- Forest structure predicts aboveground biomass better than community-weighted mean of traits, functional diversity, topography, and soil in a tropical forest across spatial scales T. Simmavong et al. 10.1016/j.foreco.2024.122457
- Sentinel-1 Coherence for Mapping Above-Ground Biomass in Semiarid Forest Areas O. Cartus et al. 10.1109/LGRS.2021.3071949
- Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI H. Tang et al. 10.1016/j.rse.2023.113571
- Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+ S. Solberg et al. 10.1186/s13021-015-0023-8
- Tree aboveground biomass and species richness of the mature tropical forests of Darien, Panama, and their role in global climate change mitigation and biodiversity conservation J. Mateo‐Vega et al. 10.1111/csp2.42
- Forest aboveground biomass stock and resilience in a tropical landscape of Thailand N. Jha et al. 10.5194/bg-17-121-2020
- Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory E. Rödig et al. 10.1111/geb.12639
- Opportunities and challenges for an Indonesian forest monitoring network F. Brearley et al. 10.1007/s13595-019-0840-0
- Estimation of Rubber Plantation Biomass Based on Variable Optimization from Sentinel-2 Remote Sensing Imagery Y. Fu et al. 10.3390/f15060900
20 citations as recorded by crossref.
- The Importance of Consistent Global Forest Aboveground Biomass Product Validation L. Duncanson et al. 10.1007/s10712-019-09538-8
- Seeing Central African forests through their largest trees J. Bastin et al. 10.1038/srep13156
- Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome S. Guitet et al. 10.1371/journal.pone.0138456
- Impact of deforestation and climate on the Amazon Basin’s above-ground biomass during 1993–2012 J. Exbrayat et al. 10.1038/s41598-017-15788-6
- Plot-level variability in biomass for tropical forest inventory designs N. Picard et al. 10.1016/j.foreco.2018.07.052
- CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change K. Anderson‐Teixeira et al. 10.1111/gcb.12712
- A network to understand the changing socio‐ecology of the southern African woodlands (SEOSAW): Challenges, benefits, and methods 10.1002/ppp3.10168
- Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation P. Patterson et al. 10.1088/1748-9326/ab18df
- Error in the estimation of emission factors for forest degradation in central Africa N. Picard et al. 10.1007/s10310-015-0510-5
- Lianas and soil nutrients predict fine‐scale distribution of above‐ground biomass in a tropical moist forest A. Ledo et al. 10.1111/1365-2745.12635
- A methodological framework to assess the carbon balance of tropical managed forests C. Piponiot et al. 10.1186/s13021-016-0056-7
- Ground Data are Essential for Biomass Remote Sensing Missions J. Chave et al. 10.1007/s10712-019-09528-w
- Co-variation in biomass and environment at the scale of a forest concession in central Africa G. Mankou et al. 10.1017/S0266467417000177
- Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship B. Buma et al. 10.1371/journal.pone.0212526
- Geomorphic control of rain-forest floristic composition in French Guiana: more than a soil filtering effect? S. Guitet et al. 10.1017/S0266467415000620
- Effect of ground surface interpolation methods on the accuracy of forest attribute modelling using unmanned aerial systems-based digital aerial photogrammetry A. Graham et al. 10.1080/01431161.2019.1694722
- Decrease of L-band SAR backscatter with biomass of dense forests S. Mermoz et al. 10.1016/j.rse.2014.12.019
- SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana D. Ho Tong Minh et al. 10.1016/j.rse.2015.12.037
- Limited carbon and biodiversity co‐benefits for tropical forest mammals and birds L. Beaudrot et al. 10.1890/15-0935
- Spatially explicit analysis of field inventories for national forest carbon monitoring D. Marvin & G. Asner 10.1186/s13021-016-0050-0
Saved (final revised paper)
Saved (final revised paper)
Saved (preprint)
Latest update: 07 Jan 2025
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of...
Altmetrics
Final-revised paper
Preprint