Articles | Volume 11, issue 23
https://doi.org/10.5194/bg-11-6827-2014
https://doi.org/10.5194/bg-11-6827-2014
Research article
 | 
08 Dec 2014
Research article |  | 08 Dec 2014

Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave

Viewed

Total article views: 9,652 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
6,421 2,942 289 9,652 157 172
  • HTML: 6,421
  • PDF: 2,942
  • XML: 289
  • Total: 9,652
  • BibTeX: 157
  • EndNote: 172
Views and downloads (calculated since 22 Apr 2014)
Cumulative views and downloads (calculated since 22 Apr 2014)

Cited

Saved (final revised paper)

Saved (final revised paper)

Saved (preprint)

Discussed (final revised paper)

Discussed (preprint)

Latest update: 01 Mar 2024
Download
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
Altmetrics
Final-revised paper
Preprint