Articles | Volume 11, issue 23
Biogeosciences, 11, 6827–6840, 2014
https://doi.org/10.5194/bg-11-6827-2014
Biogeosciences, 11, 6827–6840, 2014
https://doi.org/10.5194/bg-11-6827-2014

Research article 08 Dec 2014

Research article | 08 Dec 2014

Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

M. Réjou-Méchain et al.

Related authors

Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries
Pierre Ploton, Nicolas Barbier, Stéphane Takoudjou Momo, Maxime Réjou-Méchain, Faustin Boyemba Bosela, Georges Chuyong, Gilles Dauby, Vincent Droissart, Adeline Fayolle, Rosa Calisto Goodman, Matieu Henry, Narcisse Guy Kamdem, John Katembo Mukirania, David Kenfack, Moses Libalah, Alfred Ngomanda, Vivien Rossi, Bonaventure Sonké, Nicolas Texier, Duncan Thomas, Donatien Zebaze, Pierre Couteron, Uta Berger, and Raphaël Pélissier
Biogeosciences, 13, 1571–1585, https://doi.org/10.5194/bg-13-1571-2016,https://doi.org/10.5194/bg-13-1571-2016, 2016
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Bioaerosols and atmospheric ice nuclei in a Mediterranean dryland: community changes related to rainfall
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022,https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021,https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021,https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment – results from UAS-based high-resolution remote sensing
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021,https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – A global simulation study with LPJmL (V. 5.0-tillage-cc)
Vera Porwollik, Susanne Rolinski, Jens Heinke, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-215,https://doi.org/10.5194/bg-2021-215, 2021
Revised manuscript accepted for BG
Short summary

Cited articles

Agrawal, A., Nepstad, D., and Chhatre, A.: Reducing emissions from deforestation and forest degradation, Annu. Rev. Env. Resour., 36, 373–396, 2011.
Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes, R. F.: High-resolution forest carbon stocks and emissions in the Amazon, P. Natl. Acad. Sci., 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107, 2010.
Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., Breugel, M. van, Davies, S., Hall, J. S., Muller-Landau, H. C., Potvin, C., Sousa, W., Wright, J., and Bermingham, E.: High-fidelity national carbon mapping for resource management and REDD+, Carbon Balance and Management, 8, 1–14, https://doi.org/10.1186/1750-0680-8-7, 2013.
Baccini, A. and Asner, G. P.: Improving pantropical forest carbon maps with airborne LiDAR sampling, Carbon Management, 4, 591–600, 2013.
Baccini, A., Friedl, M. A., Woodcock, C. E., and Zhu, Z.: Scaling field data to calibrate and validate moderate spatial resolution remote sensing models, Photogramm. Eng. Rem. S., 73, 945–954, 2007.
Download
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
Altmetrics
Final-revised paper
Preprint