Articles | Volume 12, issue 10
Biogeosciences, 12, 2953–2974, 2015
Biogeosciences, 12, 2953–2974, 2015

Research article 21 May 2015

Research article | 21 May 2015

A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

D. Archer

Related authors

A model of mercury cycling and isotopic fractionation in the ocean
David E. Archer and Joel D. Blum
Biogeosciences, 15, 6297–6313,,, 2018
Short summary
A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity
Tinna Jokulsdottir and David Archer
Geosci. Model Dev., 9, 1455–1476,,, 2016
Short summary
Modeling the impediment of methane ebullition bubbles by seasonal lake ice
S. Greene, K. M. Walter Anthony, D. Archer, A. Sepulveda-Jauregui, and K. Martinez-Cruz
Biogeosciences, 11, 6791–6811,,, 2014
Short summary

Related subject area

Earth System Science/Response to Global Change: Models, Geological History
Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244,,, 2020
Short summary
Improving global paleogeography since the late Paleozoic using paleobiology
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439,,, 2017
Short summary
A framework for benchmarking land models
Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou
Biogeosciences, 9, 3857–3874,,, 2012
Evolution of ancient Lake Ohrid: a tectonic perspective
N. Hoffmann, K. Reicherter, T. Fernández-Steeger, and C. Grützner
Biogeosciences, 7, 3377–3386,,, 2010

Cited articles

Archer, D. and Brovkin V.: The millennial lifetime of fossil fuel CO2, Climatic Change, 90, 283–297, 2008.
Archer, D. E., Buffett, B. A., and McGuire, P. C.: A two–dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles, Biogeosciences, 9, 2859–2878,, 2012.
Archer, D. E., Eby, M., Brovkin, V., Ridgewell, A. J., Cao, L., Mikolajewicz, U., Caldeira, K., Matsueda, H., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric lifetime of fossil fuel carbon dioxide, Ann. Rev. Earth Planet Sci., 37, 117–34, 2009.
Cramer, B. and Franke, D.: Indications for an active petroleum system in the Laptev Sea, NE Siberia, J. Petrol. Geol., 28, 369–383, 2005.
Dutta, K., Schuur, E. A. G., Neff, J. C., and Zimov S. A.:, Potential carbon release from permafrost soils of Northeastern Siberia, Glob. Change Biol., 12, 2336–2351, 2006.
Short summary
Methane hydrate may be stable at the base of the permafrost zone in sediments of the Siberian continental margin, but the sediments' depth below the sea floor precludes a fast response time (order 1-10 years) that would be required for the released methane to have a significant impact on the near-term evolution of Earth's climate. However, the Arctic could amplify anthropogenic climate change by releasing carbon on timescales of centuries or millennia.
Final-revised paper