Articles | Volume 12, issue 16
https://doi.org/10.5194/bg-12-4913-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-4913-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Instituto de Física, UNAM, Circuito Interior de la Investigación Científica, Cuidad Universitaria, México D.F., C.P. 04510, Mexico
Independent researcher, Bigla str. 7, Skopje, the former Yugoslav Republic of Macedonia
Related authors
Karo Michaelian and Aleksandar Simeonov
Biogeosciences, 19, 4029–4034, https://doi.org/10.5194/bg-19-4029-2022, https://doi.org/10.5194/bg-19-4029-2022, 2022
Short summary
Short summary
We reply to Lars Björn's critique of our article concerning the importance of photon dissipation to the origin and evolution of the biosphere. Björn doubts our assertion that organic pigments, ecosystems, and the biosphere arose out of a non-equilibrium thermodynamic imperative to increase global photon dissipation. He shows that the albedo of some non-living material is less than that of living material. We point out, however, that photon dissipation involves other factors besides albedo.
Karo Michaelian and Aleksandar Simeonov
Biogeosciences, 19, 4029–4034, https://doi.org/10.5194/bg-19-4029-2022, https://doi.org/10.5194/bg-19-4029-2022, 2022
Short summary
Short summary
We reply to Lars Björn's critique of our article concerning the importance of photon dissipation to the origin and evolution of the biosphere. Björn doubts our assertion that organic pigments, ecosystems, and the biosphere arose out of a non-equilibrium thermodynamic imperative to increase global photon dissipation. He shows that the albedo of some non-living material is less than that of living material. We point out, however, that photon dissipation involves other factors besides albedo.
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P., and de Vries, M. S.: Photochemical selectivity in guanine–cytosine base-pair structures, Proc. Natl. Acad. Sci., 102, 20–23, 2005.
Agati, G., Matteini, P., Goti, A., and Tattini, M.: Chloroplast-located flavonoids can scavenge singlet oxygen, New Phytol., 174, 77–89, 2007.
Ajlani, G. and Vernotte, C.: Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803, Plant Mol. Biol., 37, 577–580, 1998.
Allen, J. F. and Martin, W.: Evolutionary biology – out of thin air, Nature, 445, 610–612, 2007.
Altermann, W. and Kazmierczak, J.: Archean microfossils: a reappraisal of early life on Earth, Res. Microbiol., 154, 611–617, 2003.
Amard, B. and Bertrand-Sarfati, J.: Microfossils in 2000Ma old cherty stromatolites of the Franceville group, Gabon, Precambrian Res., 81, 197–221, 1997.
Anbar, A. D. and Knoll, A. H.: Proterozoic ocean chemistry and evolution: a bioinorganic bridge?, Science, 297, 1137–1142, 2002.
Austin, S. M. and Waddell, T. G.: Prebiotic synthesis of vitamin B6-type compounds, Origins Life Evol. B., 29, 287–296, 1999.
Bahcall, J. N., Pinsonneault, M. H., and Basu, S.: Solar models: current epoch and time dependences, neutrinos, and helioseismological properties, Astrophys. J., 555, 990–1012, 2001.
Ball, S., Colleoni, C., Cenci, U., Raj, J. N., and Tirtiaux, C.: The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis, J. Exp. Bot., 62, 1775–1801, 2011.
Balskus, E. P., Case, R. J., and Walsh, C. T.: The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities, FEMS Microbiol Ecol., 77, 322–332, 2011.
Baudouin-Cornu, P. and Thomas, D.: Evolutionary biology: oxygen at life's boundaries, Nature, 445, 35–36, 2007.
Beale, S. I.: Biosynthesis of phycobilins, Chem. Rev., 93, 785–802, 1993.
Bekker, A., Holland, H. D., Wang, P. L., Rumble III, D., Stein, H. J., Hannah, J. L., Coetzee, L. L., and Beukes, N. J.: Dating the rise of atmospheric oxygen, Nature, 427, 117–120, 2004.
Bengtson, S., Belivanova, V., Rasmussen, B., and Whitehouse, M.: The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older, P. Natl. Acad. Sci. USA, 106, 7729–7734, 2009.
Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Gillette, J. S., Clemett, S. J., and Zare, R. N.: UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers, Science, 283, 1135–1138, 1999.
Brautigam, C. A., Smith, B. S., Ma, Z., Palnitkar, M., Tomchick, D. R., Machius, M., and Deisenhofer, J.: Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana, P. Natl. Acad. Sci. USA, 101, 12142–12147, 2004.
Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E.: Archean molecular fossils and the early rise of eukaryotes, Science, 285, 1033–1036, 1999.
Brocks, J. J., Buick, R., Logan, G. A., and Summons, R. E.: Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia, Geochim. Cosmochim. Ac., 67, 4289–4319, 2003.
Brown, S. B., Houghton, J. D., and Vernon, D. I.: Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin, J. Photoch. Photobio. B, 5, 3–23, 1990.
Bryant, D. A. and Frigaard, N. U.: Prokaryotic photosynthesis and phototrophy illuminated, Trends Microbiol., 14, 488–496, 2006.
Butterfield, N. J.: Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes, Paleobiology, 263, 386–404, 2000.
Caetano-Anollés, G., Kim, K. M., and Caetano-Anollés, D.: The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis, J. Mol. Evol., 74, 1–34, 2012.
Callahan, M. P., Smith, K. E., Cleaves, H. J., Ruzica, J., Stern, J. C., Glavin, D. P., House, C. H., and Dworkin, J. P: Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases, P. Natl. Acad. Sci. USA, 108, 13995–13998, 2011.
Callis, P. R.: Polarized fluorescence and estimated lifetimes of the DNA bases at room temperature, Chem. Phys. Lett., 61, 563–567, 1979.
Canfield, D. E.: The early history of atmospheric oxygen: homage to Robert M. Garrels, Annu. Rev. Earth Pl. Sc., 33, 1–36, 2005.
Canfield, D. E. and Teske, A.: Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies, Nature, 382, 127–132, 1996.
Castenholz, R. W. and Garcia-Pichel, F.: Cyanobacterial Responses to UV-Radiation, in: The Ecology of Cyanobacteria, edited by: Whitton, B. A. and Potts, M., Kluwer Academic Publishers, Dordrecht, the Netherlands, 591–611, 2002.
Caughey, W. S., Smythe, G. A., O'Keeffe, D. H., Maskasky, J. E., and Smith M. I.: Heme A of cytochrome c oxicase. Structure and properties: comparisons with hemes B, C, and S and derivatives, J. Biol. Chem., 250, 7602–7622, 1975.
Cavalier-Smith, T.: Membrane heredity and early chloroplast evolution, Trends Plant Sci., 5, 174–182, 2000.
Christie, J. M., Arvai, A. S., Baxter, K. J., Heilmann, M., Pratt, A. J., O'Hara, A., Kelly, S. M., Hothorn, M., Smith, B. O., Hitomi, K., Jenkins, G. I., and Getzoff, E. D.: Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges, Science, 335, 1492–1496, 2012.
Cleaves, H. and Miller, S.: The nicotinamide biosynthetic pathway is a by-product of the RNA World, J. Mol. Evol., 52, 73–77, 2001.
Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., and Bada, J. L.: A reassessment of prebiotic organic synthesis in neutral planetary atmospheres, Origins Life Evol. B., 38, 105–115, 2008.
Clarke, J. T., Warnock, R. C. M., and Donoghue, P. C. J.: Establishing a time-scale for plant evolution, New Phytol., 192, 266–301, 2011.
Cnossen, I., Sanz-Forcada, J., Favata, F., Witasse, O., Zegers, T., and Arnold, N. F.: The habitat of early life: solar X-ray and UV radiation at Earth's surface 4–3.5 billion years ago, J. Geophys. Res., 112, E02008, https://doi.org/10.1029/2006JE002784, 2007.
Crespo-Hernández, C. E., Cohen, B., Hare, P. M., and Kohler, B.: Ultrafast excited-state dynamics in nucleic acids, Chem. Rev., 104, 1977–2019, 2004.
Crounse, J., Sistrom, W. R., and Nemser, S.: Carotenoid pigments and the in vivo spectrum of bacteriochlorophyll, Photochem. Photobiol., 2, 361–375, 1963.
Crowe, S. A., Døssing, L. N., Beukes, N. J., Bau, M., Stephanus, J., Kruger, J., Frei, R., and Canfield, D. E.: Atmospheric oxygenation three billion years ago, Nature, 501, 535–538, 2013.
Crowell, J. C.: Pre-Mesozoic ice ages; their bearing on understanding the climate system, Mem. Geol. Soc. Amer., 192, 1–106, 1999.
DasSarma, S.: Extreme halophiles are models for astrobiology, Microbe, 1, 120–127, 2006.
DasSarma, S.: Extreme microbes, Am. Sci., 95, 224–231, 2007.
Delwiche, C. W.: Tracing the thread of plastid diversity through the tapestry of life. Am. Nat., 154, S164–S177, 1999.
Dixon, J. M., Taniguchi, M., and Lindsey, J. S.: PhotochemCAD 2. A refined program with accompanying spectral databases for photochemical calculations, Photochem. Photobiol., 81, 212–213, 2005.
Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T., and Farquhar, J.: Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era, Earth Planet. Sc. Lett., 269, 29–40, 2008.
Doolittle, W. F.: Uprooting the tree of life, Sci. Am., 282, 90–95, 2000.
Dorren, J. D. and Guinan, E. F.: The Sun in time: detecting and modeling magnetic inhomogenities on solar-type stars, in: The Sun as a Variable Star, edited by: Pap, J. M., Frölich, C., Hudson, H. S., and Solanki, S. K., Cambridge University Press, Cambridge, 206–216, 1994.
Doughty, C. E., Wolf, A., and Malhi, Y.: The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia, Nat. Geosci., 6, 761–764, https://doi.org/10.1038/ngeo1895, 2013.
Dowler, M. J., Fuller, W. D., Orgel, L. E., and Sanchez, R. A.: Prebiotic synthesis of propiolaldehyde and nicotinamide, Science, 169, 1320–1321, 1970.
Du, H., Fuh, R.-C. A., Li, J., Corkan, L. A., and Lindsey, J. S.: PhotochemCAD: a computeraided design and research tool in photochemistry, Photochem. Photobiol., 68, 141–142, 1998.
Edelhoch, H.: Spectroscopic determination of tryptophan and tyrosine in proteins, Biochemistry-US, 6, 1948–1954, 1967.
El Albani, A., Bengtson, S., Canfield, D. E., Bekker, A., Macchiarelli, R., Mazurier, A., Hammarlund, E., Boulvais, P., Dupuy, J.-J., Fontaine, C., Fuersich, F. T., Gauthier-Lafaye, F., Janvier, P., Javaux, E., Ossa, F., Pierson-Wickmann, A.-C., Riboulleau, A., Sardini, P., Vachard, D., Whitehouse, M., and Meunier, A.: Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature, 466, 100–104, 2010.
Emelyanov, V. V.: Rickettsiaceae, rickettsia-like endosymbionts, and the origin of mitocondria, Bioscience Rep., 21, 1–17, 2001.
Erwin, D. and Valentine, J.: The Cambrian Explosion: The Construction of Animal Biodiversity, 1st edn., Roberts and Company Publishers, 2013.
ESA: European Space Agency ,June 27, Double vortex at Venus south pole unveiled, ScienceDaily Retrieved August 15, 2015, available at: http://www.sciencedaily.com/releases/2006/06/060627104232.htm, 2006.
Evreinova, T. N., Mamontova, T. W., Karnauhov, V. N., Stephanov, S. B., and Hrust, U. R.: Coacervate systems and origin of life, Origins of life, 5, 201–205, 1974.
Falkowski, P. G. and Isozaki, Y.: Geology. The story of O2, Science, 322, 540–542, 2008.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J.: The evolution of modern eukaryotic phytoplankton, Science, 305, 354–360, 2004.
Farquhar, J., Savarino, J., Airieau, S., and Thiemens, M. H.: Observation of wavelength sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere, J. Geophys. Res., 106, 32829–32839, 2001.
Fasman, G. D.: Nucleic acids, in: Handbook of Biochemistry and Molecular Biology, Vol. I, 3rd edn., CRC Press, Cleveland, Ohio, 65–215, 1975.
Fasman, G. D.: Proteins, in: Handbook of Biochemistry and Molecular Biology, Vol. I, 3rd edn., CRC Press, Cleveland, Ohio, 183–203, 1976.
Feng, D. F., Cho, G., and Doolittle, R. F.: Determining divergence times with a protein clock: update and reevaluation, P. Natl. Acad. Sci. USA, 94, 13028–13033, 1997.
Ferroni, L., Klisch, M., Pancaldi, S., and Häder, D.-P.: Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme, Mar. Drugs, 8, 106–121, 2010.
Fox, S. W. and Harada, K.: Thermal copolymerization of amino acids to a product resembling protein, Science, 128, 1214, https://doi.org/10.1126/science.128.3333.1214, 1958.
Fugate, R. D., Chin, C.-A., and Song, P.-S.: A spectroscopic analysis of vitamin B12 derivatives, Biochim. Biophys. Acta, 421, 1–11, 1976.
Garcia-Pichel, F.: Solar ultraviolet and the evolutionary history of cyanobacteria, Origins Life Evol. B., 28, 321–347, 1998.
Georgopapadakou, N. H. and Scott, A. I.: On B12 biosynthesis and evolution, J. Theor. Biol., 69, 381–384, 1977.
Gerakines, P. A., Moore, M. H., and Hudson, R. L.: Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide, Icarus, 170, 202–213, 2004.
Glansdorff, N., Xu, Y., and Labedan, B.: The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner, Biol. Direct., 3, 29, https://doi.org/10.1186/1745-6150-3-29, 2008.
Glick, D.: Methods of Biochemical Analysis, Interscience Publishers Inc. MET, New York, 199–200, 1964.
Goldfarb, A. R., Saidel, L. J., and Mosovich, E.: The ultraviolet absorption spectra of proteins, J. Biol. Chem., 193, 397–404, 1951.
Golubic, S. and Lee, S. J.: Early cyanobacterial fossil record: preservation, palaeoenvironments and identification, Eur. J. Phycol., 34, 339–348, 1999.
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A.: Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature, 435, 466–469, 2005.
Gould, K. S. and Lister, C.: Flavonoid functions in plants, in: Flavonoids: Chemistry, Biochemistry and Applications, edited by: Andersen, Ø. M. and Markham, K. R., CRC Press LLC, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, 397–441, 2006.
Grassineau, N. V., Nisbet, E. G., Bickle, M. J., Fowler, C. M., Lowry, D., Mattey, D. P., Abell, P., and Martin, A.: Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe Belt, Zimbabwe, P. Roy. Soc. Lon. B Bio., 268, 113–119, 2001.
Gustavsson, T., Bányász, A., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., Barone, V., and Improta, R.: Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives, J. Am. Chem. Soc., 128, 607–619, 2006.
Guzik, J. A., Willson, L. A., and Brunish, W. M.: A comparison between mass-losing and standard solar models, Ap. J., 319, 957–965, 1987.
Hatier, J.-H. B. and Gould, K. S.: Anthocyanin function in vegetative organs, in: Anthocyanins: Biosynthesis, Functions, and Applications, edited by: Gould, K., Davies, K. M., and Winefield, C., Springer, Springer Science + Business Media LLC, Spring Street New York, NY, 1–12, 2009.
Havaux, M., Guedeney, G., He, Q., and Grossman, A. R.: Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803, Biochim. Biophys. Acta, 1557, 21–33, 2003.
Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., and Hedges, S. B.: Molecular evidence for the early colonization of land by fungi and plants, Science, 293, 1129–1133, 2001.
Heinz, B. and Ried, W.: The formation of chromophores through amino acid thermolysis and their possible role as prebiotic photoreceptors, Biosystems, 14, 33–40, 1981.
Heinz, B. and Ried, W.: The molecular structure of "chromo proteinoids" – amino acid thermolysates containing abiogenetically produced flavins and deazaflavins as prosthetic groups, Origins of life, 14, 279–289, 1984.
Heinz, B., Ried, W., and Dose, K.: Thermal production of pteridines and flavins from amino acid mixtures, Angew. Chem., 91, 510–511, 1979.
Hill, J. A., Pratt, J. M., and Williams, R. J. P.: The chemistry of vitamin B12, Part I, The valency and spectrum of the coenzyme, J. Chem. Soc., 5149–5153, 1964.
Hodgson, G. and Baker, B.: Evidence for porphyrins in the Orgueil meteorite, Nature, 202, 125–131, 1964.
Hodgson, G. and Baker, B.: Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions, Nature, 216, 29–32, 1967.
Hodgson, G. W. and Ponnamperuma, C.: Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia, and water vapor, P. Natl. Acad. Sci. USA, 59, 22–28, 1968.
Holland, H. D.: The oxygenation of the atmosphere and oceans, Philos. T. Roy. Soc. B, 361, 903–915, 2006.
Holliday, G. L., Thornton, J. M., Marquet, A., Smith, A. G., Rébeillé, F., Mendel, R., Schubert, H. L., Lawrence, A. D., and Warren, M. J.: Evolution of enzymes and pathways for the biosynthesis of cofactors, Nat. Prod. Rep., 24, 972–987, 2007.
Jahn, D., Moser, J., Schubert, W.-D., and Heinz, D. W.: Transfer RNA-dependent aminolevulinic acid formation: structure and function of glutamyl-tRNA synthetase, reductase and glutamate-1-semialdehyde-2,1-aminomutase, in: Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, edited by: Grimm, B., Porra, R. J., Rüdiger, W., and Scheer, H., Advances in Photosynthesis and Respiration, vol. 25, edited by: Govindjee, A. Springer, Dordrecht, The Netherlands, 159–171, 2006.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S.. J., Yi, Y., and Fawcett, P. J.: Terrestrial wáter fluxes dominated by transpiration, Nature, 496, 347–350, 2013.
Javaux, E. J., Knoll, A. H., and Walter, M. R.: Morphological and ecological complexity in early eukaryotic ecosystems, Nature, 412, 66–69, 2001.
Johnson, E. W., Briggs, D. E. G., Suthren, R. J., Wright, J. L., and Tunnicliff, S. P.: Freshwater arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District, Geol. Mag., 131, 395–406, 1994.
Johnson, J. E., Webb, S. M., Thomas, K., Ono, S., Kirschvink, J. L., and Fischer, W. W.: Manganese-oxidizing photosynthesis before the rise of cyanobacteria, P. Natl. Acad. Sci. USA, 110, 11238–11243, 2013.
Kalisky, O., Feitelson, J., and Ottolenghi, M.: Photochemistry and fluorescence of bacteriorhopsin excited in its 280-nm band, Biochemistry-US, 20, 205–209, 1981.
Karam, P. A.: Inconstant Sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth, Health Phys., 84, 322–333, 2003.
Kasting, J. F., Zahnle, K. J., and Walker, J. C. G.: Photochemistry of methane in the Earth's early atmosphere, Precambrian Res., 20, 121–148, 1983.
Keeling, P. J.: Diversity and evolutionary history of plastids and their hosts, Am. J. Bot., 91, 1481–1493, 2004.
Kharecha, P., Kasting, J. F., and Siefert, J. L.: A coupled atmosphere-ecosystem model of the early Archean Earth, Geobiology, 3, 53–76, 2005.
Kiang, N. Y., Siefert, J., Govindjee, A., and Blankenship, R. E.: Spectral signatures of photosynthesis. I. Review of Earth organisms, Astrobiology, 7, 222–251, 2007.
Kim, E. and Archibald, J. M.: Diversity and evolution of plastids and their genomes, in: The Chloroplast-Interactions with the Environment, edited by: Aronsson, H. and Sandelius, A. S., Springer-Verlag, Berlin, 1–40, 2008.
Kleidon, A. and Renner, M.: A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change, Earth Syst. Dynam., 4, 455–465, https://doi.org/10.5194/esd-4-455-2013, 2013.
Knauth, L. P.: Isotopic signatures and sedimentary records, in: Lecture Notes in Earth Sciences #43, edited by: Clauer, N. and Chaudhuri, S., Springer-Verlag, Berlin, 123–152, 1992.
Knauth, L. P. and Lowe, D. R.: High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5Ga Swaziland group, South Africa, Geol. Soc. Am. Bull., 115, 566–580, 2003.
Knoll, A. H. and Carroll, S. B.: Early animal evolution: emerging views from comparative biology and geology, Science, 284, 2129–2137, 1999.
Kolesnikov, M. P. and Egorov, I. A.: Porphyrins and phycobilins in Precambrian rocks, Orig. Life, 8, 383–390, 1977.
Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., and Nash, C. Z.: The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis, P. Natl. Acad. Sci. USA, 102, 11131–11136, 2005.
Koziol, J.: Studies on flavins in organic solvents I. Spectral characteristics of riboflavin, riboflavin tetrabutyrate and lumichrome, Photochem. Photobiol., 5, 41–54, 1966.
Kritsky, M. S., Lyudnikova, T. A., Mironov, E. A., and Moskaleva, I. V.: The UV radiation-driven reduction of pterins in aqueous solution, J. Photoch. Photobio. B, 39, 43–48, 1997.
Kritsky, M. S., Telegina, T. A., Vechtomova, Y. L., Kolesnikov, M. P., Lyudnikova, T. A., and Golub, O. A.: Excited flavin and pterin coenzyme molecules in evolution, Biochemistry-Moscow+, 75, 1200–1216, 2010.
Kritsky, M. S., Telegina, T. A., Vechtomova, Y. L., Kolesnikov, M. P., Lyudnikova, T. A., and Buglak, A. A.: Photoexcited molecules of pteridine derivatives in prebiotic and biological evolution, Paleontol. J., 47, 1074–1079, 2013a.
Kritsky, M. S., Telegina, T. A., Vechtomova, Y. L., and Buglak, A. A.: Why flavins are not competitors of chlorophyll in the evolution of biological converters of solar energy, Int. J. Mol. Sci., 14, 575–593, 2013b.
Kumar, A. M., Schaub, U., Soll, D., and Ujwal, M. L.: Glutamyl-transfer RNA: at the crossroad between chlorophyll and protein biosynthesis, Trends Plant Sci., 1, 371–376, 1996.
Kwok, S.: Organic matter in space: from star dust to the Solar System, Astrophys. Space Sci., 319, 5–21, 2009.
Kyrpides, N. C. and Ouzounis, C. A.: Nucleic acid-binding metabolic enzymes: living fossils of stereochemical interactions?, J. Mol. Evol., 40, 564–569, 1995.
Larkum, A. W. D.: The evolution of chlorophylls, in: Chlorophylls, edited by: Scheer, H., CRC Press, Boston, 367–383, 1991.
Latorre, A., Durban, A., Moya, A., and Pereto, J.: The role of symbiosis in eukaryotic evolution, in: Origins and Evolution of Life – An Astrobiological Perspective, edited by: Gargaud, M., Lopez-Garcia, P., and Martin, H., Cambridge University press, Cambridge UK, 326–339, 2011.
Lavery, T. J., Roudnew, B., Gill, P., Seymour, J., Seuront, L., Johnson, G., Mitchell, J. G., and Smetacek, V.: Iron defecation by sperm whales stimulates carbon export in the Southern Ocean, P. Roy. Soc. B, 277, 3527–3531, 2010.
Lindsey, J. S., Ptaszek, M., and Taniguchi, M.: Simple formation of an abiotic porphyrinogen in aqueous solution, Origins Life Evol. B., 39, 495–515, 2009.
Lotka, A. J.: Contribution to the energetics of evolution, P. Natl. Acad. Sci., 8, 147–151, 1922.
Lovelock, J. E.: Gaia: Medicine for an ailing planet, 2nd Ed., Gaia Books, New York, 2005.
Lowe, D. R. and Tice, M. M.: Geologic evidence for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control, Geology, 32, 493–496, 2004.
MacNaughton, R. B., Cole, J. M., Dalrymple, R. W., Braddy, S. J., Briggs, D. E. G., and Lukie, T. D.: First steps on land: arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada, Geology, 30, 391–394, 2002.
Majerfeld, I. and Yarus, M.: A diminutive and specific RNA binding site for L-tryptophan, Nucleic Acids Res., 33, 5482–5493, 2005.
Martin, W. and Mentel, M.: The origin of mitochondria, Nature Education, 3, 58, 2010.
Mayer, R., Toulme, F., Montenay-Garestier, T., and Helene, C.: The role of tyrosine in the association of proteins and nucleic acids. Specific recognition of single-stranded nucleic acids by tyrosine-containing peptides, J. Biol. Chem., 254, 75–82, 1979.
McFadden, G. I.: Primary and secondary endosymbiosis and the origin of plastids, J. Phycol., 37, 951–959, 2001.
McGrath, M. A., Courtin, R., and Smith, T. E.: The ultraviolet albedo of titan, Icarus, 131, 382–392, 1998.
McLaren, J., Ngo, D. T., and Olivera B. M.: Pyridine nucleotide metabolism in Escherichia coli. III. Biosynthesis from alternative precursors in vivo, J. Biol. Chem., 248, 5144–5159, 1973.
Meierhenrich, U. J., Muñoz Caro, G. M., Schutte, W. A., Thiemann, W. H., Barbier, B., and Brack, A.: Precursors of biological cofactors from ultraviolet irradiation of circumstellar/interstellar ice analogues, Chemistry, 11, 4895–4900, 2005.
Michaelian, K.: Thermodynamic stability of ecosystems, J. Theor. Biol., 237, 323–335, 2005.
Michaelian, K.: Thermodynamic origin of life, http://arxiv.org/abs/0907.0042 (last access: 25 July 2015), 2009.
Michaelian, K.: Thermodynamic dissipation theory for the origin of life, Earth Syst. Dynam., 2, 37–51, https://doi.org/10.5194/esd-2-37-2011, 2011.
Michaelian, K.: HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function", Hydrol. Earth Syst. Sci., 16, 2629–2645, https://doi.org/10.5194/hess-16-2629-2012, 2012a.
Michaelian, K.: The biosphere: a thermodynamic imperative, in: The Biosphere, edited by: Ishwaran, N., INTECH, Paris, 51–60, 2012b.
Michaelian, K.: A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution, J. Phys. Conf. Ser. 475, 012010 https://doi.org/10.1088/1742-6596/475/1/012010, 2013.
Michaelian, K. and Manuel, O.: Origin and evolution of life constraints on the solar model, J. Mod. Phys, 2, 587–594, 2011.
Michaelian, K. and Santillán Padilla, N.: DNA Denaturing through UV-C Photon Dissipation: A Possible Route to Archean Non-enzymatic Replication, BioRxiv, Cold Spring Harbor Labs Journals, https://doi.org/10.1101/009126, 2014.
Middleton, C. T., de la Harpe, K., Su, C., Law, Y. K., Crespo-Hernandez, C. E., and Kohler B.: DNA excited – state dynamics: from single bases to the double helix, Annu. Rev. Phys. Chem., 60, 217–239, 2009.
Miller, S. L.: A production of amino acids under possible primitive Earth conditions, Science, 117, 528–529, 1953.
Miller, S. L.: The formation of organic compounds on the primitive earth, Ann. NY Acad. Sci., 69, 260–275, 1957.
Mojzsis, S. J., Harrison, T. M., and Pidgeon, R. T.: Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4300 Myr ago, Nature, 409, 178–181, 2001.
Montané, M. H. and Kloppstech, K.: The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?, Gene, 258, 1–8, 2000.
Moon, Y. J., Lee, E. M., Park, Y. M., Park, Y. S., Chung, W. I., and Chung, Y. H.: The role of cyanopterin in UV/blue light signal transduction of cyanobacterium Synechocystis sp. PCC 6803 phototaxis, Plant Cell Physiol., 51, 969–980, 2010.
Mulkidjanian, A. Y. and Galperin, M. Y.: A time to scatter genes and a time to gather them: evolution of photosynthesis genes in bacteria, Adv. Bot. Res., 66, 1–35, 2013.
Mulkidjanian, A. Y. and Junge, W.: On the origin of photosynthesis as inferred from sequence analysis, Photosynth. Res., 51, 27–42, 1997.
Mulkidjanian, A. Y., Cherepanov, D. A., and Galperin, M. Y.: Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light, BMC Evol. Biol., 3, 12, https://doi.org/10.1186/1471-2148-3-12, 2003.
Mulkidjanian, A. Y., Koonin, E. V., Makarova, K. S., Mekhedov, S. L., Sorokin, A., Wolf, Y. I., Dufresne, A., Partensky, F., Burd, H., Kaznadzey, D., Haselkorn, R., and Galperin, M. Y.: The cyanobacterial genome core and the origin of photosynthesis, P. Natl. Acad. Sci. USA, 103, 13126–13131, 2006.
Müller, P., Li, X., and Niyogi, K. K.: Non-photochemical quenching. A response to excess light energy, Plant Physiol., 125, 1558–1566, 2001.
Nisbet, E. G. and Sleep, N. H.: The habitat and nature of early life, Nature, 409, 1083–1091, 2001.
Nobel, P. S.: Physicochemical and Environmental Plant Physiology, 4th edn., Academic Press, San Diego, CA, 238–244, 2009.
Noffke, N., Christian, D., Wacey, D., and Hazen, R. M.: Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia, Astrobiology, 13, 1103–1124, 2013.
Nollet, L. M. L.: Fat-soluble vitamins, in: Food Analysis by HPLC, 3rd edn., edited by: Nollet, L. M. L. and Toldra, F., CRC Press, Taylor & Francis Group, Parkway NW, 292–-296, 2012.
Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T., and Rosing, M. T.: Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks, Nat. Geosci., 7, 25–28, 2014.
Olson, J. M.: Photosynthesis in the Archean era, Photosynth. Res., 88, 109–117, 2006.
Olson, J. M. and Pierson, B. K.: Evolution of reaction centers in photosynthetic procariots, Int. Rev. Cytol., 108, 209–248, 1987.
Onsager,L.: Reciprocal Relations in Irreversible Processes I, Phys. Rev. 37, 405-426, 1931.
Oro, J. and Kimball, A. P.: Synthesis of purines under possible primitive earth conditions, I. Adenine from hydrogen cyanide, Arch. Biochem. Biophys., 94, 217–227, 1961.
Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T.: How to measure and predict the molar absorption coefficient of a protein, Protein Sci., 4, 2411–2423, 1995.
Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., and Freedman, R.: Greenhouse warming by CH4 in the atmosphere of early Earth, J. Geophys. Res., 105, 11981–11990, 2000.
Pasternack, R. F. and Gibbs, E. J.: Porphyrin and metalloporphyrin interactions with nucleic acids, in: Probing of Nucleic Acids by Metal Complexes of Small Molecules, edited by: Sigel, A. and Sigel, H., Metal Ions in Biological Systems, Vol. 33, Marcel Dekker, New York, 367–391, 1996.
Pasternack, R. F., Giannetto, A., Pagano, P., and Gibbs, E. J.: Self-assembly of porphyrins on nucleic acids and polypeptides, J. Am. Chem. Soc., 113, 7799–7800, 1991.
Pasternack, R. F., Bustamante, C., Collings, P. J., Giannetto, A., and Gibbs, E. J.: Porphyrin assemblies on DNA as studied by a resonance light-scattering technique, J. Am. Chem. Soc., 115, 5393–5399, 1993.
Pecourt, J. L., Peon, J., and Kohler, B.: Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water, J. Am. Chem. Soc., 122, 9348–9349, 2000.
Pisani, D., Poling, L. L., Lyons-Weiler, M., Hedges, S. B.: The colonization of land by animals: molecular phylogeny and divergence times among arthropods, BMC Biol., 2, 1, https://doi.org/10.1186/1741-7007-2-1, 2004.
Podda, M., Weber, C., Traber, M. G., and Packer, L.: Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones, J. Lipid Res., 37, 893–901, 1996.
Polyansky, A. A. and Zagrovic, B.: Evidence of direct complementary interactions between messenger RNAs and their cognate proteins, Nucleic Acids Res., 41, 8434–8443, 2013.
Poole, A. M. and Penny, D.: Evaluating hypotheses for the origin of eukaryotes, Bioessays, 29, 74–84, 2007.
Portwich, A. and Garcia-Pichel, F.: Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. strain PCC 6912, Phycologia, 42, 384–392, 2003.
Powner, M. W., Gerland, B., and Sutherland, J. D.: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, 459, 239–242, 2009.
Pratt, J. M. and Thorp, R. G.: The chemistry of vitamin B12, Part V, The class (b) character of the cobaltic ion, J. Chem. Soc. A, 187–191, 1966.
Prigogine, I.: Thermodynamics of Irreversible Processes, Wiley, New York, 1967.
Raffaelli, N.: Nicotinamide coenzyme synthesis: a case of ribonucleotide emergence or a byproduct of the RNA world?, in: Origins of Life: The Primal Self-Organization, edited by: Egel, R., Lankenau, D. H., and Mulkidjanian, A. Y., Springer-Verlag, Heidelberg, Germany, 185–208, 2011.
Raven, J. A. and Edwards, D.: Roots: evolutionary origins and biogeochemical significance, J. Exp. Bot., 52, 381–401, 2001.
Raymond, J. and Segre, D.: The effect of oxygen on biochemical networks and the evolution of complex life, Science, 311, 1764–1767, 2006.
Ribas, I., Guinan, E. F., Güdel, M., and Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å), Ap. J., 622, 680–694, 2005.
Rowan, K. S.: Photosynthetic Pigments of Algae, Cambridge University Press, Cambridge, 112–210, 1989.
Ruban, A. V.: The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting, John Wiley and Sons, Ltd, Chichester, West Sussex, United Kingdom, 81–91, 2012.
Russell, M. J. and Hall, A. J.: The onset and early evolution of life, in: Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere – Constraints from Ore Deposits, edited by: Kesler, S. E. and Ohmoto, H., Geol. Soc. Am., Boulder, CO, 198, 1–32, 2006.
Rye, R. and Holland, H. D.: Paleosols and the evolution of atmospheric oxygen: a critical review, Am. J. Sci., 298, 621–672, 1998.
Sagan, C.: Ultraviolet selection pressure on the earliest organisms, J. Theor. Biol., 39, 195–200, 1973.
Sagan, C. and Chyba, C.: The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases, Science, 276, 1217–1221, 1997.
Sagan, C. and Miller, S. L.: Molecular synthesis in simulated reducing planetary atmospheres, Astron. J. 65, 499–505, 1960.
Schidlowski, M.: A 3800-million-year isotopic record of life from carbon in sedimentary rocks, Nature, 333, 313–318, 1988.
Schidlowski, M.: Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept, Precambrian Res., 106, 117–134, 2001.
Schirrmeister, B. E., de Vos, J. M., Antonelli, A., and Bagheri, H. C.: Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event, P. Natl. Acad. Sci. USA, 110, 1791–1796, 2013.
Schopf, J. W.: Fossil evidence of Archaean life, Philos. T. Roy. Soc. B, 361, 869–885, 2006.
Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., and Tripathi, A. B.: Evidence of Archean life: Stromatolites and microfossils, Precambrian Res., 158, 141–155, 2007.
Scott, C. and Glasspool, J.: The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration, P. Natl. Acad. Sci. USA, 103, 10861–10865, https://doi.org/10.1073/pnas.0604090103, 2006.
Sergeev, V. N., Gerasimenko, L. M., and Zavarzin, G. A.: Proterozoic history and present state of cyanobacteria, Mikrobiologiia, 71, 725–740, 2002.
Serrano-Andrés, L. and Merchán, M.: Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective, J. Photoch. Photobio. C, 10, 21–32, 2009.
Sessions, A. L., Doughty, D. M., Welander, P. V., Summons, R. E., and Newman, D. K.: The continuing puzzle of the Great Oxidation Event, Curr. Biol., 19, R567–R574, 2009.
Shick, J. M. and Dunlap, W. C.: Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective function in aquatic organisms, Annu. Rev. of Physiol., 64, 223–262, 2002.
Siggel, U., Bindig, U., Endisch, C., Komatsu, T., Tsuchida, E., Voigt, J., and Fuhrhop, H. J.: Photophysical and photochemical properties of porphyrin aggregates, Ber. Bunsenges. Phys. Chem., 100, 2070–2075, 1996.
Sigma-Aldrich: Thiamine hydrochloride product information, available at: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Product_Information_Sheet/t4625pis.pdf, last access: 25 January 2014a.
Sigma: Folic acid product information, available at: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/f8758pis.pdf, last access: 25 January 2014b.
Simionescu, C. I., Simionescu, B. C., Mora, R., and Leanca, M.: Porphyrin-like compounds genesis under simulated abiotic conditions, Orig. Life, 9, 103–114, 1978.
Smith, D. S., Scalo, J., and Wheeler, J. C.: Transport of ionizing radiation in terrestrial-like exoplanet atmospheres, Icarus, 171, 229–253, 2004.
Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M., and Buick, R.: Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints, Nature, 484, 359–362, 2012.
Stafford, H. A.: Anthocyanins and betalains: evolution of the mutually exclusive pathways, Plant Sci., 101, 91–98, 1994.
Stanley, S. M.: Earth System History, 3rd edn., W. H. Freeman and Company, New York, NY, 263–287, 2008.
Stoebe, B. and Kowallik, K. V.: Gene-cluster analysis in chloroplast genomics, Trends Genet., 15, 344–347, 1999.
Stomp, M., Huisman, J., Stal, L. J., and Matthijs, H. C.: Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule, ISME J., 1, 271–282, 2007.
Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A.: 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis, Nature, 400, 554–557, 1999.
Suo, Z., Avci, R., Schweitzer, M. H., and Deliorman, M.: Porphyrin as an ideal biomarker in the search for extraterrestrial life, Astrobiology, 7, 605–615, 2007.
Suttie, J. W.: Vitamin K in Health and Disease (Oxidative Stress and Disease), 1st edn., CRC Press, Taylor & Francis Group, Boca Raton Florida, 31–33, 2009.
Szostak, J. W.: The eightfold path to non-enzymatic RNA replication, J. Sys. Chem., 3,2, 2012.
Szutka, A.: Porphine-like substances: probable synthesis during chemical evolution, Nature, 202, 1231–1232, 1964.
Tappert, R., McKellar, R. C., Wolfe, A. P., Tappert, M. C., Ortega-Blanco, J., Muehlenbachs, K.: Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic, Geochim. Cosmochim. Ac., 121, 240–262, 2013.
Theobald, D. L.: A formal test of the theory of universal common ancestry, Nature, 465, 219–222, 2010.
Tian, F., Toon, O. B., Pavlov, A. A., and De Sterck, H.: A hydrogen rich early Earth atmosphere, Science, 308, 1014–1017, https://doi.org/10.1126/science.1106983, 2005.
Tice, M. M. and Lowe, D. R.: Photosynthetic microbial mats in the 3416-Myr-old ocean, Nature, 431, 549–552, 2004.
Tice, M. M. and Lowe, D. R.: Hydrogen-based carbon fixation in the earliest known photosynthetic organisms, Geology, 34, 37–40, 2006.
Trainer, M. G., Pavlov, A. A., DeWitt, H. L., Jimenez, J. L., McKay, C. P., Toon, O. B., and Tolbert, M. A.: Organic haze on titan and the early Earth, P. Natl. Acad. Sci. USA, 103, 18035–18042, 2006.
Tomitani, A., Okada, K., Miyashita, H., Matthijs, H. C., Ohno, T., and Tanaka, A.: Chlorophyll $b $ and phycobilins in the common ancestor of cyanobacteria and chloroplasts, Nature, 400, 159–162, 1999.
Toulmé, J. J., Charlier, M., and Héléne, C.: Specific recognition of single-stranded regions in ultraviolet-irradiated and heat-denatured DNA by tryptophan-containing peptides, P. Natl. Acad. Sci. USA, 71, 3185–3188, 1974.
Unrau, P. J. and Bartel, D. P.: RNA-catalysed nucleotide synthesis, Nature, 395, 260–263, 1998.
Vekshin, N. L.: Photonics of Biopolymers, Springer, Berlin, Heidelberg, 2002.
Wang, J., Bras, R. L., Lerdau, M., and Salvucci, G. D.: A maximum hypothesis of transpiration, J. Geophys. Res., 112, G03010, https://doi.org/10.1029/2006JG000255, 2007.
Wang, M., Yafremava, L. S., Caetano-Anollés, D., Mittenthal, J. E., and Caetano-Anollés, G.: Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world, Genome Res., 17, 1572–1585, 2007.
White III, H. B.: Coenzymes as fossils of an earlier metabolic state, J. Mol. Evol., 7, 101–104, 1976.
Wiechert, U. H.: Earth's early atmosphere, Science, 298, 2341–2342, 2002.
Woese, C. R. and Gupta, R.: Are archaebacteria merely derived "prokaryotes"?, Nature, 289, 95–96, 1981.
Woutersen, S. and Cristalli, G.: Strong enhancment of vibrational relaxation by Watson-Crick base pairing, J. Chem. Phys., 121, 5381–5386, 2004.
Yarus, M., Widmann, J. J., and Knight, R.: RNA-amino acid binding: a stereochemical era for the genetic code, J. Mol. Evol., 69, 406–429, 2009.
Young, G. M., von Brunn, V., Gold, D. J. C., and Minter, W. E. L.: Earth's oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (similar to 2.9 Ga) of South Africa, J. Geol., 106, 523–538, 1998.
Zalar, A., Tepfer, D., Hoffmann, S. V., Kollmann, A., and Leach, S.: VUV-UV absorption spectroscopy of DNA and UV screens suggests strategies for UV resistance during evolution and space travel, Proc. of SPIE, 6694, Instruments, Methods, and Missions for Astrobiology X, 66940U (October 01, 2007); edited by: Hoover, R. B., Levin, G. V., Rozanov, A. Y., and Davies, P. C. W., San Diego, CA, https://doi.org/10.1117/12.733699, 2007.
Zollinger, H.: Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, Verlag Helvetica Chimica Acta, Zürich, 15–65, 2003.
Zvezdanović, J. and Marković, D.: Bleaching of chlorophylls by UV irradiation in vitro: the effects on chlorophyll organization in acetone and n-hexane, J. Serb. Chem. Soc., 73, 271–282, 2008.
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
We show that the fundamental molecules of life (those common to all three domains of life:...
Altmetrics
Final-revised paper
Preprint