Articles | Volume 12, issue 16
https://doi.org/10.5194/bg-12-4939-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-4939-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconsidering the role of carbonate ion concentration in calcification by marine organisms
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Viewed
Total article views: 5,087 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 May 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,868 | 1,983 | 236 | 5,087 | 127 | 167 |
- HTML: 2,868
- PDF: 1,983
- XML: 236
- Total: 5,087
- BibTeX: 127
- EndNote: 167
Total article views: 4,168 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Aug 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,444 | 1,505 | 219 | 4,168 | 122 | 149 |
- HTML: 2,444
- PDF: 1,505
- XML: 219
- Total: 4,168
- BibTeX: 122
- EndNote: 149
Total article views: 919 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 May 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
424 | 478 | 17 | 919 | 5 | 18 |
- HTML: 424
- PDF: 478
- XML: 17
- Total: 919
- BibTeX: 5
- EndNote: 18
Cited
63 citations as recorded by crossref.
- Naturally acidified habitat selects for ocean acidification–tolerant mussels J. Thomsen et al. 10.1126/sciadv.1602411
- Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH S. Comeau et al. 10.1098/rspb.2016.1669
- CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems L. Bach et al. 10.3389/fclim.2019.00007
- Climate sensitivity and the rate of ocean acidification: future impacts, and implications for experimental design M. Humphreys & H. Browman 10.1093/icesjms/fsw189
- Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod D. Mayk et al. 10.3389/fmars.2022.894182
- Seagrass can mitigate negative ocean acidification effects on calcifying algae E. Bergstrom et al. 10.1038/s41598-018-35670-3
- Size-dependent response of foraminiferal calcification to seawater carbonate chemistry M. Henehan et al. 10.5194/bg-14-3287-2017
- Impacts of elevated pCO2 on Mediterranean mussel (Mytilus galloprovincialis): Metal bioaccumulation, physiological and cellular parameters N. Sezer et al. 10.1016/j.marenvres.2020.104987
- Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming Y. Lu et al. 10.1016/j.marenvres.2018.10.007
- Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry D. Evans et al. 10.1016/j.gca.2018.02.048
- Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels T. Sanders et al. 10.5194/bg-18-2573-2021
- Ocean acidification refugia in variable environments L. Kapsenberg & T. Cyronak 10.1111/gcb.14730
- Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response L. Stapp et al. 10.1007/s00360-016-1053-6
- The carbonate system on the coral patches and rocky intertidal habitats of the northern Persian Gulf: Implications for ocean acidification studies A. Saleh et al. 10.1016/j.marpolbul.2019.110834
- Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model M. Seifert et al. 10.1525/elementa.2021.00104
- Effect of calcite saturation state on the growth and mortality of Heterocypris incongruens and a proposal for an reference artificial sediment in the sediment toxicity test ISO14371 Y. Gu et al. 10.1016/j.scitotenv.2019.134993
- Patterns and processes in the history of body size in turritelline gastropods, Jurassic to Recent C. Pietsch et al. 10.1017/pab.2023.7
- Routine uncertainty propagation for the marine carbon dioxide system J. Orr et al. 10.1016/j.marchem.2018.10.006
- Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life C. Hurd et al. 10.1071/MF19267
- Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014 K. Krumhardt et al. 10.5194/bg-13-1163-2016
- Export of calcium carbonate corrosive waters from the East Siberian Sea L. Anderson et al. 10.5194/bg-14-1811-2017
- Local drivers of the seasonal carbonate cycle across four contrasting coastal systems T. McGrath et al. 10.1016/j.rsma.2019.100733
- PyCO2SYS v1.8: marine carbonate system calculations in Python M. Humphreys et al. 10.5194/gmd-15-15-2022
- Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material S. Linge Johnsen et al. 10.1371/journal.pone.0230569
- Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation L. Zhao et al. 10.1016/j.scitotenv.2016.10.200
- Scaling Global Warming Impacts on Ocean Ecosystems: Lessons From a Suite of Earth System Models A. Bahl et al. 10.3389/fmars.2020.00698
- Response to Waldbusser et al. (2016): “Calcium carbonate saturation state: on myths and this or that stories” T. Cyronak et al. 10.1093/icesjms/fsv224
- Consideration of coastal carbonate chemistry in understanding biological calcification A. Fassbender et al. 10.1002/2016GL068860
- Summer and winter MgCO3 levels in the skeletons of Arctic bryozoans A. Iglikowska et al. 10.1016/j.marenvres.2020.105166
- Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation L. Zhao et al. 10.1016/j.jembe.2016.10.009
- Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures L. Zhao et al. 10.1016/j.chemosphere.2018.03.180
- Impacts of seawater saturation state (ΩA= 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates J. Ries et al. 10.1016/j.gca.2016.07.001
- Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean C. Daniels et al. 10.3354/meps11820
- Dissolution: The Achilles’ Heel of the Triton Shell in an Acidifying Ocean B. Harvey et al. 10.3389/fmars.2018.00371
- Tracking the Space‐Time Evolution of Ocean Acidification Extremes in the California Current System and Northeast Pacific F. Desmet et al. 10.1029/2021JC018159
- Integrative cytological analysis of the effects of Ca2+ and vitamin D3 on extracellular Ca2+ flux and intracellular Ca2+ reserves in the mantle of the pearl oyster (Hyriopsis cumingii Lea) W. Li et al. 10.1016/j.cbpb.2018.09.002
- Food supply confers calcifiers resistance to ocean acidification L. Ramajo et al. 10.1038/srep19374
- Ocean Acidification and Coastal Marine Invertebrates: Tracking CO2Effects from Seawater to the Cell F. Melzner et al. 10.1146/annurev-marine-010419-010658
- Ocean warming and acidification alter the behavioral response to flow of the sea urchin Paracentrotus lividus M. Cohen‐Rengifo et al. 10.1002/ece3.5678
- Coccolithophore Growth and Calcification in an Acidified Ocean: Insights From Community Earth System Model Simulations K. Krumhardt et al. 10.1029/2018MS001483
- Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms M. Tresguerres 10.1242/jeb.128389
- Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations L. Bach et al. 10.1371/journal.pone.0159068
- Phanerozoic biological reworking of the continental carbonate rock reservoir C. Walton & O. Shorttle 10.1016/j.epsl.2024.118640
- Responses of Freshwater Calcifiers to Carbon-Dioxide-Induced Acidification A. Ninokawa & J. Ries 10.3390/jmse10081068
- Aragonite saturation states and pH in western Norwegian fjords: seasonal cycles and controlling factors, 2005–2009 A. Omar et al. 10.5194/os-12-937-2016
- Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica S. Di Giglio et al. 10.1016/j.scitotenv.2020.142669
- Transgenerational acclimation to seawater acidification in the Manila clam Ruditapes philippinarum: Preferential uptake of metabolic carbon L. Zhao et al. 10.1016/j.scitotenv.2018.01.225
- Effects of hypoxia and non-lethal shell damage on shell mechanical and geochemical properties of a calcifying polychaete J. Leung & N. Cheung 10.5194/bg-15-3267-2018
- Effects of extra feeding combined with ocean acidification and increased temperature on the carbon isotope values (δ13C) in the mussel shell T. Lee et al. 10.1016/j.jembe.2021.151562
- Multiple carbonate system parameters independently govern shell formation in a marine mussel A. Ninokawa et al. 10.1038/s43247-024-01440-5
- Twenty Years of Marine Carbon Cycle Observations at Devils Hole Bermuda Provide Insights into Seasonal Hypoxia, Coral Reef Calcification, and Ocean Acidification N. Bates 10.3389/fmars.2017.00036
- Riverine Calcium End-Members Improve Coastal Saturation State Calculations and Reveal Regionally Variable Calcification Potential S. Beckwith et al. 10.3389/fmars.2019.00169
- Calcification in a marginal sea – influence of seawater [Ca<sup>2+</sup>] and carbonate chemistry on bivalve shell formation J. Thomsen et al. 10.5194/bg-15-1469-2018
- Amplified Subsurface Signals of Ocean Acidification A. Fassbender et al. 10.1029/2023GB007843
- Rapid warming and salinity changes in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean acidification J. Salisbury & B. Jönsson 10.1007/s10533-018-0505-3
- Arctic Ocean annual high in $${{\boldsymbol{p}}}_{{{\bf{CO}}}_{{\bf{2}}}}$$ could shift from winter to summer J. Orr et al. 10.1038/s41586-022-05205-y
- Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions S. Sett et al. 10.1093/plankt/fby018
- Impact of seawater carbonate chemistry on the calcification of marine bivalves J. Thomsen et al. 10.5194/bg-12-4209-2015
- Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present‐day pCO2 conditions S. Uthicke et al. 10.1111/gcb.13223
- Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification C. McNicholl et al. 10.1016/j.jembe.2019.151208
- H+ -driven increase in CO2 uptake and decrease in HCO3− uptake explain coccolithophores' acclimation responses to ocean acidification D. Kottmeier et al. 10.1002/lno.10352
- Direct Deposition of Crystalline Aragonite in the Controlled Biomineralization of the Calcareous Tubeworm V. Chan et al. 10.3389/fmars.2015.00097
- The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricata H. Bedwell-Ivers et al. 10.1093/icesjms/fsw026
57 citations as recorded by crossref.
- Naturally acidified habitat selects for ocean acidification–tolerant mussels J. Thomsen et al. 10.1126/sciadv.1602411
- Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH S. Comeau et al. 10.1098/rspb.2016.1669
- CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems L. Bach et al. 10.3389/fclim.2019.00007
- Climate sensitivity and the rate of ocean acidification: future impacts, and implications for experimental design M. Humphreys & H. Browman 10.1093/icesjms/fsw189
- Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod D. Mayk et al. 10.3389/fmars.2022.894182
- Seagrass can mitigate negative ocean acidification effects on calcifying algae E. Bergstrom et al. 10.1038/s41598-018-35670-3
- Size-dependent response of foraminiferal calcification to seawater carbonate chemistry M. Henehan et al. 10.5194/bg-14-3287-2017
- Impacts of elevated pCO2 on Mediterranean mussel (Mytilus galloprovincialis): Metal bioaccumulation, physiological and cellular parameters N. Sezer et al. 10.1016/j.marenvres.2020.104987
- Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming Y. Lu et al. 10.1016/j.marenvres.2018.10.007
- Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry D. Evans et al. 10.1016/j.gca.2018.02.048
- Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels T. Sanders et al. 10.5194/bg-18-2573-2021
- Ocean acidification refugia in variable environments L. Kapsenberg & T. Cyronak 10.1111/gcb.14730
- Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response L. Stapp et al. 10.1007/s00360-016-1053-6
- The carbonate system on the coral patches and rocky intertidal habitats of the northern Persian Gulf: Implications for ocean acidification studies A. Saleh et al. 10.1016/j.marpolbul.2019.110834
- Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model M. Seifert et al. 10.1525/elementa.2021.00104
- Effect of calcite saturation state on the growth and mortality of Heterocypris incongruens and a proposal for an reference artificial sediment in the sediment toxicity test ISO14371 Y. Gu et al. 10.1016/j.scitotenv.2019.134993
- Patterns and processes in the history of body size in turritelline gastropods, Jurassic to Recent C. Pietsch et al. 10.1017/pab.2023.7
- Routine uncertainty propagation for the marine carbon dioxide system J. Orr et al. 10.1016/j.marchem.2018.10.006
- Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life C. Hurd et al. 10.1071/MF19267
- Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014 K. Krumhardt et al. 10.5194/bg-13-1163-2016
- Export of calcium carbonate corrosive waters from the East Siberian Sea L. Anderson et al. 10.5194/bg-14-1811-2017
- Local drivers of the seasonal carbonate cycle across four contrasting coastal systems T. McGrath et al. 10.1016/j.rsma.2019.100733
- PyCO2SYS v1.8: marine carbonate system calculations in Python M. Humphreys et al. 10.5194/gmd-15-15-2022
- Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material S. Linge Johnsen et al. 10.1371/journal.pone.0230569
- Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation L. Zhao et al. 10.1016/j.scitotenv.2016.10.200
- Scaling Global Warming Impacts on Ocean Ecosystems: Lessons From a Suite of Earth System Models A. Bahl et al. 10.3389/fmars.2020.00698
- Response to Waldbusser et al. (2016): “Calcium carbonate saturation state: on myths and this or that stories” T. Cyronak et al. 10.1093/icesjms/fsv224
- Consideration of coastal carbonate chemistry in understanding biological calcification A. Fassbender et al. 10.1002/2016GL068860
- Summer and winter MgCO3 levels in the skeletons of Arctic bryozoans A. Iglikowska et al. 10.1016/j.marenvres.2020.105166
- Insights from sodium into the impacts of elevated pCO2 and temperature on bivalve shell formation L. Zhao et al. 10.1016/j.jembe.2016.10.009
- Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures L. Zhao et al. 10.1016/j.chemosphere.2018.03.180
- Impacts of seawater saturation state (ΩA= 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates J. Ries et al. 10.1016/j.gca.2016.07.001
- Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean C. Daniels et al. 10.3354/meps11820
- Dissolution: The Achilles’ Heel of the Triton Shell in an Acidifying Ocean B. Harvey et al. 10.3389/fmars.2018.00371
- Tracking the Space‐Time Evolution of Ocean Acidification Extremes in the California Current System and Northeast Pacific F. Desmet et al. 10.1029/2021JC018159
- Integrative cytological analysis of the effects of Ca2+ and vitamin D3 on extracellular Ca2+ flux and intracellular Ca2+ reserves in the mantle of the pearl oyster (Hyriopsis cumingii Lea) W. Li et al. 10.1016/j.cbpb.2018.09.002
- Food supply confers calcifiers resistance to ocean acidification L. Ramajo et al. 10.1038/srep19374
- Ocean Acidification and Coastal Marine Invertebrates: Tracking CO2Effects from Seawater to the Cell F. Melzner et al. 10.1146/annurev-marine-010419-010658
- Ocean warming and acidification alter the behavioral response to flow of the sea urchin Paracentrotus lividus M. Cohen‐Rengifo et al. 10.1002/ece3.5678
- Coccolithophore Growth and Calcification in an Acidified Ocean: Insights From Community Earth System Model Simulations K. Krumhardt et al. 10.1029/2018MS001483
- Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms M. Tresguerres 10.1242/jeb.128389
- Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations L. Bach et al. 10.1371/journal.pone.0159068
- Phanerozoic biological reworking of the continental carbonate rock reservoir C. Walton & O. Shorttle 10.1016/j.epsl.2024.118640
- Responses of Freshwater Calcifiers to Carbon-Dioxide-Induced Acidification A. Ninokawa & J. Ries 10.3390/jmse10081068
- Aragonite saturation states and pH in western Norwegian fjords: seasonal cycles and controlling factors, 2005–2009 A. Omar et al. 10.5194/os-12-937-2016
- Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica S. Di Giglio et al. 10.1016/j.scitotenv.2020.142669
- Transgenerational acclimation to seawater acidification in the Manila clam Ruditapes philippinarum: Preferential uptake of metabolic carbon L. Zhao et al. 10.1016/j.scitotenv.2018.01.225
- Effects of hypoxia and non-lethal shell damage on shell mechanical and geochemical properties of a calcifying polychaete J. Leung & N. Cheung 10.5194/bg-15-3267-2018
- Effects of extra feeding combined with ocean acidification and increased temperature on the carbon isotope values (δ13C) in the mussel shell T. Lee et al. 10.1016/j.jembe.2021.151562
- Multiple carbonate system parameters independently govern shell formation in a marine mussel A. Ninokawa et al. 10.1038/s43247-024-01440-5
- Twenty Years of Marine Carbon Cycle Observations at Devils Hole Bermuda Provide Insights into Seasonal Hypoxia, Coral Reef Calcification, and Ocean Acidification N. Bates 10.3389/fmars.2017.00036
- Riverine Calcium End-Members Improve Coastal Saturation State Calculations and Reveal Regionally Variable Calcification Potential S. Beckwith et al. 10.3389/fmars.2019.00169
- Calcification in a marginal sea – influence of seawater [Ca<sup>2+</sup>] and carbonate chemistry on bivalve shell formation J. Thomsen et al. 10.5194/bg-15-1469-2018
- Amplified Subsurface Signals of Ocean Acidification A. Fassbender et al. 10.1029/2023GB007843
- Rapid warming and salinity changes in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean acidification J. Salisbury & B. Jönsson 10.1007/s10533-018-0505-3
- Arctic Ocean annual high in $${{\boldsymbol{p}}}_{{{\bf{CO}}}_{{\bf{2}}}}$$ could shift from winter to summer J. Orr et al. 10.1038/s41586-022-05205-y
- Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions S. Sett et al. 10.1093/plankt/fby018
6 citations as recorded by crossref.
- Impact of seawater carbonate chemistry on the calcification of marine bivalves J. Thomsen et al. 10.5194/bg-12-4209-2015
- Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present‐day pCO2 conditions S. Uthicke et al. 10.1111/gcb.13223
- Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification C. McNicholl et al. 10.1016/j.jembe.2019.151208
- H+ -driven increase in CO2 uptake and decrease in HCO3− uptake explain coccolithophores' acclimation responses to ocean acidification D. Kottmeier et al. 10.1002/lno.10352
- Direct Deposition of Crystalline Aragonite in the Controlled Biomineralization of the Calcareous Tubeworm V. Chan et al. 10.3389/fmars.2015.00097
- The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricata H. Bedwell-Ivers et al. 10.1093/icesjms/fsw026
Saved (final revised paper)
Saved (preprint)
Discussed (final revised paper)
Latest update: 21 Nov 2024
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is...
Altmetrics
Final-revised paper
Preprint