Articles | Volume 12, issue 16
https://doi.org/10.5194/bg-12-4939-2015
https://doi.org/10.5194/bg-12-4939-2015
Research article
 | 
19 Aug 2015
Research article |  | 19 Aug 2015

Reconsidering the role of carbonate ion concentration in calcification by marine organisms

L. T. Bach

Related authors

Monitoring, reporting, and verification for ocean alkalinity enhancement
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023,https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Field experiments in ocean alkalinity enhancement research
Tyler Cyronak, Rebecca Albright, and Lennart T. Bach
State Planet, 2-oae2023, 7, https://doi.org/10.5194/sp-2-oae2023-7-2023,https://doi.org/10.5194/sp-2-oae2023-7-2023, 2023
Short summary
Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: theory, measurements, and calculations
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023,https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Climate targets, carbon dioxide removal, and the potential role of ocean alkalinity enhancement
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023,https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Influence of Ocean Alkalinity Enhancement with Olivine or Steel Slag on a Coastal Plankton Community in Tasmania
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
EGUsphere, https://doi.org/10.5194/egusphere-2023-2120,https://doi.org/10.5194/egusphere-2023-2120, 2023
Short summary

Related subject area

Biogeochemistry: Biomineralization
Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools
Narimane Dorey, Sophie Martin, and Lester Kwiatkowski
Biogeosciences, 20, 4289–4306, https://doi.org/10.5194/bg-20-4289-2023,https://doi.org/10.5194/bg-20-4289-2023, 2023
Short summary
Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023,https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Biogenic calcium carbonate as evidence for life
Sara Ronca, Francesco Mura, Marco Brandano, Angela Cirigliano, Francesca Benedetti, Alessandro Grottoli, Massimo Reverberi, Daniele Federico Maras, Rodolfo Negri, Ernesto Di Mauro, and Teresa Rinaldi
Biogeosciences, 20, 4135–4145, https://doi.org/10.5194/bg-20-4135-2023,https://doi.org/10.5194/bg-20-4135-2023, 2023
Short summary
Element ∕ Ca ratios in Nodosariida (Foraminifera) and their potential application for paleoenvironmental reconstructions
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023,https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil
João Pedro Saldanha, Joice Cagliari, Rodrigo Scalise Horodyski, Lucas Del Mouro, and Mírian Liza Alves Forancelli Pacheco
Biogeosciences, 20, 3943–3979, https://doi.org/10.5194/bg-20-3943-2023,https://doi.org/10.5194/bg-20-3943-2023, 2023
Short summary

Cited articles

Agostini, S., Fujimura, H., Higuchi, T., Yuyama, I., Casareto, B. E., Suzuki, Y., and Nakano, Y.: The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis., C. R. Biol., 336, 384–91, https://doi.org/10.1016/j.crvi.2013.07.003, 2013.
Allemand, D., Ferrier-Pagès, C., Furla, P., Houlbrèque, F., Puverel, S., Reynaud, S., Tambutté, É., Tambutté, S., and Zoccola, D.: Biomineralisation in reef-building corals: from molecular mechanisms to environmental control, C. R. Palevol, 3, 453–467, https://doi.org/10.1016/j.crpv.2004.07.011, 2004.
Bach, L. T., Riebesell, U., and Schulz, K. G.: Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi, Limnol. Oceanogr., 56, 2040–2050, https://doi.org/10.4319/lo.2011.56.6.2040, 2011.
Bach, L. T., Mackinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D. C., Brownlee, C., and Riebesell, U.: Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi, New Phytol., 199, 121–34, https://doi.org/10.1111/nph.12225, 2013.
Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., and Schulz, K. G.: A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework, Prog. Oceanogr., 135, 125–138, https://doi.org/10.1016/j.pocean.2015.04.012, 2015.
Download
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
Altmetrics
Final-revised paper
Preprint