Articles | Volume 12, issue 21
https://doi.org/10.5194/bg-12-6503-2015
https://doi.org/10.5194/bg-12-6503-2015
Research article
 | 
13 Nov 2015
Research article |  | 13 Nov 2015

Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

C. Arslan, A. Sattar, C. Ji, S. Sattar, K. Yousaf, and S. Hashim

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (08 Oct 2015) by Tina Treude
AR by Chaudhry Arslan on behalf of the Authors (12 Oct 2015)  Author's response   Manuscript 
ED: Publish as is (27 Oct 2015) by Tina Treude
AR by Chaudhry Arslan on behalf of the Authors (01 Nov 2015)  Manuscript 
Download
Short summary
The study focuses on co-digestion of food waste and its derivatives i.e. noodle waste and rice waste with sludge in order to produce bio-hydrogen. The pH was set at 7 initially and was not controlled throughout the incubation in order to make the process simple. Noodle waste produced maxim bio-hydrogen production as compared to food waste and rice waste. The increase in temperature increased the bio-hydrogen production for food waste but caused negative impact on noodle and rice wastes.
Altmetrics
Final-revised paper
Preprint