Articles | Volume 12, issue 23
https://doi.org/10.5194/bg-12-6945-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-6945-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus
L. Leuzinger
CORRESPONDING AUTHOR
Département des Géosciences, Université de Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, Hôtel des Halles, 2900 Porrentruy, Switzerland
now at: CRILAR, 5301 Anillaco, La Rioja, Argentina
L. Kocsis
Institut des Dynamiques de la Surface Terrestre, Université de Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, 1015 Lausanne, Switzerland
Universiti Brunei Darussalam, Faculty of Science, Geology Group, Jalan Tungku Link, BE 1410, Brunei Darussalam
J.-P. Billon-Bruyat
Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, Hôtel des Halles, 2900 Porrentruy, Switzerland
S. Spezzaferri
Département des Géosciences, Université de Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
T. Vennemann
Institut des Dynamiques de la Surface Terrestre, Université de Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, 1015 Lausanne, Switzerland
Related authors
No articles found.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33–56, https://doi.org/10.5194/bg-16-33-2019, https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Short summary
By combining taxonomy and geochemistry, we corroborated the described paleoenvironments from a Neogene fossiliferous deposit of South America. Shark teeth specimens were used for taxonomic identification and as proxies for geochemical analyses. With a multidisciplinary approach we refined the understanding about the paleoenvironmental setting and the paleoecological characteristics of the studied groups, in our case, for the bull shark and its incursions into brackish waters.
Related subject area
Biodiversity and Ecosystem Function: Paleo
Comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Rates of palaeoecological change can inform ecosystem restoration
Reply to Comment on Franz et al. (2023): A reinterpretation of the 1.5 billion year old Volyn ‘biota’ of Ukraine, and discussion of the evolution of the eukaryotes, by Head et al. (2023)
Ecological evolution in northern Iberia (SW Europe) during the Late Pleistocene through isotopic analysis on ungulate teeth
Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion
Late Neogene evolution of modern deep-dwelling plankton
Photosynthetic activity in Devonian Foraminifera
Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats
Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology
Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa
Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions
Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene
Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic
Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline
The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
Climate-related changes in peatland carbon accumulation during the last millennium
Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa)
Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian–Cambrian embryos
The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024, https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Short summary
A diverse suite of “fossils” associated with the ~1.5 Ga Volyn (Ukraine) kerite was published recently. We show that at least some of them represent modern contamination including plant hairs, pollen, and likely later fungal growth. Comparable diversity is shown to exist in moderm museum dust, calling into question whether any part of the Volyn biota is of biological origin while emphasising the need for scrupulous care in collecting, analysing, and identifying Precambrian microfossils.
Walter Finsinger, Christian Bigler, Christoph Schwörer, and Willy Tinner
Biogeosciences, 21, 1629–1638, https://doi.org/10.5194/bg-21-1629-2024, https://doi.org/10.5194/bg-21-1629-2024, 2024
Short summary
Short summary
Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chornousenko, and Ulrich Struck
EGUsphere, https://doi.org/10.5194/egusphere-2024-217, https://doi.org/10.5194/egusphere-2024-217, 2024
Short summary
Short summary
The Volyn biota (Ukraine), previously assumed to be an extreme case of natural, abiotic synthesis of organic matter, is more likely a diverse assemblage of fossils from the deep biosphere. Although contamination by modern organisms cannot completely be ruled out, it is unlikely, considering all aspects, i. e. their mode of occurrence in the deep biosphere, their fossilization and mature state of organic matter, their isotope signature, and their large morphological diversity.
Monica Fernández-Garcia, Sarah Pederzani, Kate Britton, Lucia Agudo-Pérez, Andrea Cicero, Jeanne Geiling, Joan Daura, Montse Sanz-Borrás, and Ana B. Marín-Arroyo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-128, https://doi.org/10.5194/bg-2023-128, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Significant climatic changes affected Europe's landscape, animals, and human groups during the Late Pleistocene. Reconstructing the local conditions humans faced is essential to understand adaptation processes and resilience. This study analyzed the chemical composition of animal teeth consumed by humans in northern Iberia, spanning 80,000 to 15,000 years, revealing the ecological changing conditios.
Adam Woodhouse, Frances A. Procter, Sophie L. Jackson, Robert A. Jamieson, Robert J. Newton, Philip F. Sexton, and Tracy Aze
Biogeosciences, 20, 121–139, https://doi.org/10.5194/bg-20-121-2023, https://doi.org/10.5194/bg-20-121-2023, 2023
Short summary
Short summary
This study looked into the regional and global response of planktonic foraminifera to the climate over the last 5 million years, when the Earth cooled significantly. These single celled organisms exhibit the best fossil record available to science. We document an abundance switch from warm water to cold water species as the Earth cooled. Moreover, a closer analysis of certain species may indicate higher fossil diversity than previously thought, which has implications for evolutionary studies.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Zofia Dubicka, Maria Gajewska, Wojciech Kozłowski, Pamela Hallock, and Johann Hohenegger
Biogeosciences, 18, 5719–5728, https://doi.org/10.5194/bg-18-5719-2021, https://doi.org/10.5194/bg-18-5719-2021, 2021
Short summary
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Elizaveta Rivkina, Lada Petrovskaya, Tatiana Vishnivetskaya, Kirill Krivushin, Lyubov Shmakova, Maria Tutukina, Arthur Meyers, and Fyodor Kondrashov
Biogeosciences, 13, 2207–2219, https://doi.org/10.5194/bg-13-2207-2016, https://doi.org/10.5194/bg-13-2207-2016, 2016
Short summary
Short summary
A comparative analysis of the metagenomes from two 30,000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which are characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed both a low abundance of methanogenic archaea and enzymes from the carbon, nitrogen, and sulfur cycles.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
L. Zhang, L. Zhao, Z.-Q. Chen, T. J. Algeo, Y. Li, and L. Cao
Biogeosciences, 12, 1597–1613, https://doi.org/10.5194/bg-12-1597-2015, https://doi.org/10.5194/bg-12-1597-2015, 2015
Short summary
Short summary
The Smithian--Spathian boundary was a key event in the recovery of marine environments and ecosystems following the end-Permian mass extinction ~1.5 million years earlier. Our analysis of the Shitouzhai section in South China reveals major changes in oceanographic conditions at the SSB intensification of oceanic circulation leading to enhanced upwelling of nutrient- and sulfide-rich deep waters and coinciding with an abrupt cooling that terminated the Early Triassic hothouse climate.
J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor, and D. J. Beerling
Biogeosciences, 11, 321–331, https://doi.org/10.5194/bg-11-321-2014, https://doi.org/10.5194/bg-11-321-2014, 2014
D. Fredh, A. Broström, M. Rundgren, P. Lagerås, F. Mazier, and L. Zillén
Biogeosciences, 10, 3159–3173, https://doi.org/10.5194/bg-10-3159-2013, https://doi.org/10.5194/bg-10-3159-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
B. Van Bocxlaer, W. Salenbien, N. Praet, and J. Verniers
Biogeosciences, 9, 4497–4512, https://doi.org/10.5194/bg-9-4497-2012, https://doi.org/10.5194/bg-9-4497-2012, 2012
D. Hippler, N. Hu, M. Steiner, G. Scholtz, and G. Franz
Biogeosciences, 9, 1765–1775, https://doi.org/10.5194/bg-9-1765-2012, https://doi.org/10.5194/bg-9-1765-2012, 2012
J. M. Reed, A. Cvetkoska, Z. Levkov, H. Vogel, and B. Wagner
Biogeosciences, 7, 3083–3094, https://doi.org/10.5194/bg-7-3083-2010, https://doi.org/10.5194/bg-7-3083-2010, 2010
Cited articles
Agassiz, L. J. R.: Recherches sur les poissons fossiles, Imprimerie de Petipierre, Neuchâtel, Volume 3, 390 pp., 1843.
Amiot, R., Wang, X., Lécuyer, C., Buffetaut, E., Boudad, L., Cavin, L., Ding, Z., Fluteau, F., Kellner, A. W. A, Tong, H., and Zhang, F.: Oxygen and carbon isotope compositions of middle Cretaceous vertebrates from North Africa and Brazil: Ecological and environmental significance, Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 439–451, https://doi.org/10.1016/j.palaeo.2010.08.027, 2010.
Anquetin, J., Püntener, C., and Billon-Bruyat, J.-P.: A taxonomic review of the Late Jurassic eucryptodiran turtles from the Jura Mountains (Switzerland and France), Peer J., 2, e369, https://doi.org/10.7717/peerj.369, 2014.
Billon-Bruyat, J.-P., Lécuyer, C., Martineau, F., and Mazin, J.-M.: Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodilians, Palaeogeogr. Palaeoclimatol. Palaeoecol., 216, 359–375, https://doi.org/10.1016/j.palaeo.2004.11.011, 2005.
Botella, H., Valenzuela-Ríos, J. I., and Martínez-Perez, C.: Tooth replacement rates in early chondrichthyans: A qualitative approach, Lethaia, 42, 365–376, https://doi.org/10.1111/j.15023931.2009.00152.x, 2009.
Buffetaut, E., Bussert, R., and Brinkman, W.: A new nonmarine vertebrate fauna in the Upper Cretaceous of northern Sudan, Berliner Geowissenschaftlische Abhandlungen, A 120, 183–202, 1990.
Cappetta, H.: Chondrichthyes. Mesozoic and Cenozoic Elasmobranchii: Teeth, Dr. Friedr., edited by: Schultze, H.-P., Handbook of Paleoichthyology, Volume 3E, Munich, 2012.
Castro, J. I.: Biology of the blacktip shark,Carcharhinus limbatus, off the southeastern United States, Bull. Mar. Sci., 59, 508–522, 1996.
Colombié, C., and Rameil, N.: Tethyan-to-boreal correlation in the Kimmeridgian using high-resolution sequence stratigraphy (Vocontian Basin, Swiss Jura, Boulonnais, Dorset), Int. J. Earth Sci., 96, 567–591, https://doi.org/10.1007/s00531-006-0117-3, 2007.
Comment, G., Ayer, J., and Becker, D.: Deux nouveaux membres lithostratigraphiques de la Formation de Reuchenette (Kimméridgien, Ajoie, Jura suisse) – Nouvelles données géologiques et paléontologiques acquises dans le cadre de la construction de l'autoroute A16 (Transjurane), Swiss Bull. f. Angew. Geol., 16, 3–24, 2011.
Cuny, G. and Benton, M. J.: Early radiation of the neoselachian sharks in western Europe, Geobios, 32, 193–204, 1999.
Dromart, G., Garcia, J.-P., Gaumet, F., Picard, S., Rousseau, M., Atrops, F., Lécuyer, C., and Sheppard, S. M. F.: Perturbation of the carbon cycle at the Middle/Late Jurassic transition: geological and geochemical evidence, Am. J. Sci., 303, 667–707, 2003.
Duffin, C. J. and Thies, D.: Hybodont shark teeth from the Kimmeridgian (Late Jurassic) of northwest Germany, Geol. Palaeontol., 31, 235–256, 1997.
Fischer, J., Voigt, S., Schneider, J. W., Buchwitz, M., and Voigt, S.: A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries, J. Vertebr. Paleontol., 31, 937–953, 2011.
Fischer, J., Voigt, S., Franz, M., Schneider, J. W., Joachimski, M. M., Tichomirowa, M., Götze, J., and Furrer, H.: Palaeoenvironments of the late Triassic Rhaetian Sea: Implications from oxygen and strontium isotopes of hybodont shark teeth, Palaeogeogr. Palaeoclimatol. Palaeoecol., 353–355, 60–72, https://doi.org/10.1016/j.palaeo.2012.07.002, 2012.
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P.-C., and Vail, P. R.: Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins: Mesozoic-Cenozoic Sequence, Stratigr. Eur. Basins SEPM Spec. Publ., 60, 3–13 and 763–781, 1998.
Jank, M., Meyer, C., and Wetzel, A.: Late Oxfordian to Late Kimmeridgian carbonate deposits of NW Switzerland (Swiss Jura): Stratigraphical and palaeogeographical implications in the transition area between the Paris Basin and the Tethys, Sediment. Geol., 186, 237–263, https://doi.org/10.1016/j.sedgeo.2005.08.008, 2006.
Jenson, N. H.: Reproduction of the bull shark, Carcharhinus leucas, in the Lake Nicaragua-Rio San Juan System, Investig. Ichthyofauna Nicar. Lakes, 40, 539–559, 1976.
Klug, S., Tütken, T., Wings, O., Pfretzschner, H., and Martin, T.: A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China, Palaeobiodivers. Palaeoenviron., 90, 241–257, https://doi.org/10.1007/s12549-010-0032-2, 2010.
Koch, P. L., Tuross, N., and Fogel, M. L.: The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite, J. Archaeol. Sci., 24, 417–429, 1997.
Kocsis, L.: Geochemical compositions of marine fossils as proxies for reconstructing ancient environmental conditions, Chimia, 65, 787–791, 2011.
Kocsis, L., Vennemann, T. W., and Fontignie, D.: Migration of sharks into freshwater systems during the Miocene and implications for Alpine paleoelevation, Geology, 35, 451–454, https://doi.org/10.1130/G23404A.1, 2007.
Kocsis, L., \HOsi, A., Vennemann, T., Trueman, C. N., and Palmer, M. R.: Geochemical study of vertebrate fossils from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary): Evidence for a freshwater habitat of mosasaurs and pycnodont fish, Palaeogeogr. Palaeoclimatol. Palaeoecol., 280, 532–542, https://doi.org/10.1016/j.palaeo.2009.07.009, 2009.
Kohn, M. J. and Cerling, T. E.: Stable Isotope Compositions of Biological Apatite, in Phosphate: Geochemical, Geobiological, and Materials Importance, Mineralogy and Geochemistry, 48, Mineral. Soc. Am. Rev., 4, 455–488., 2002.
Kolodny, Y., Luz, B., and Navon, O.: Oxygen isotope variations in phosphate of biogenic apatites: fish bone apatite – rechecking the rules of the game, Earth Planet. Sci. Lett., 64, 398–404, 1983.
Kriwet, J.: The fish fauna from the Guimarota mine, in Guimarota – A Jurassic Ecosystem, edited by: Martin T. and Krebs, B., 41–50, Munich, 2000.
Kriwet, J. and Klug, S.: Diversity and biogeography patterns of Late Jurassic neoselachians (Chondrichthyes: Elasmobranchii), Geol. Soc. London, Spec. Publ., 295, 55–70, https://doi.org/10.1144/SP295.5, 2008.
Lécuyer, C., Picard, S., Garcia, J.-P., Sheppard, S. M. F., Grandjean, P., and Dromart, G.: Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: Evidence from δ18O values of marine fish teeth, Paleoceanography, 18, 1–16, https://doi.org/10.1029/2002PA000863, 2003.
Lécuyer, C., Amiot, R., Touzeau, A., and Trotter, J.: Calibration of the phosphate δ18O thermometer with carbonate–water oxygen isotope fractionation equations, Chem. Geol., 347, 217–226, https://doi.org/10.1016/j.chemgeo.2013.03.008, 2013.
Longinelli, A. and Nuti, S.: Oxygen isotope measurements of phosphate from fish teeth and bones, Earth Planet. Sci. Lett., 20, 337–340, 1973.
Maisey, J. G., Naylor, J. P., and Ward, D. J.: Mesozoic elasmobranchs, neoselachian phylogeny and the rise of modern elasmobranch diversity, in: Mesozoic Fishes 3 – Systematics, Paleoenvironments and Biodiversity, Proceeding of the international meeting Serpiano, 2001, edited by: Arratia, G., and Tintori, A., Verlag Dr. Friedrich Pfeil, München, 17–56, 2004.
Marty, D.: Sedimentology, taphonomy, and ichnology of Late Jurassic dinosaur tracks from the Jura carbonate platform (Chevenez-Combe Ronde tracksite, NW Switzerland): insights into the tidal-flat palaeoenvironment and dinosaur diversity, locomotion, and palaeoecology, GeoFocus, 21, 278 pp., 2008.
Marty, D. and Billon-Bruyat, J.-P.: Field-trip to the excavations in the Late Jurassic along the future Transjurane highway near Porrentruy (Canton Jura, NW Switzerland): dinosaur tracks, marine vertebrates and invertebrates, in 5th International Symposium on Lithographic Limestone and Plattenkalk, 94–129., 2009.
Marty, D., Ayer, J., Becker, D., Berger, J.-P., Billon-Bruyat, J.-P., Braillard, L., Hug, W. A., and Meyer, C.: Late Jurassic dinosaur tracksites of the Transjurane highway (Canton Jura, NW Switzerland): overview and measures for their protection and valorisation, Bull. f. Angew. Geol., 12, 75–89, 2007.
Müller, M. K.: The fish fauna of the Late Jurassic Solothurn Turtle Limestone (NW Switzerland), Swiss J. Geosci., 104, 133–146, https://doi.org/10.1007/s00015-011-0061-5, 2011.
O'Neil, J. R., Roe, L. J., Reinhard, E., and Blake, R. E.: A rapid and precise method of oxygen isotope analysis of biogenic phosphate, Isr. J. Earth Sci., 43, 203-212, 1994.
Philippe, M., Billon-Bruyat, J.-P., Garcia-Ramos, J. C., Bocat, L., Gomez, B., and Piñuela, L.: New occurrences of the wood Protocupressinoxylon purbeckensis Francis: implications for terrestrial biomes in southwestern Europe at the Jurassic/Cretaceous boundary, Palaeontology, 53, 201–214, https://doi.org/10.1111/j.1475-4983.2009.00926.x, 2010.
Pillans, R. D., Good, J. P., Anderson, W. G., Hazon, N., and Franklin, C. E.: Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine, J. Comp. Physiol. B., 175, 37–44, https://doi.org/10.1007/s00360-004-0460-2, 2005.
Popov, E. V. and Shapovalov, K. M.: New finds of chimaeroid fishes (Holocephali, Chimaeroidei) from the Jurassic of European Russia, in: Modern Russian paleontology: classic and newest methods, vol. C, edited by: Rozanov, A. Y., 25–44, Paleontological Institute, Russian Academy of Sciences, Moscow, 2007.
Poyato-Ariza, F. J.: Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and a new interpretation of their evolutionary history, Bull. Kitakyushu Museum Nat. Hist. Hum. Hist., A, 169–184, 2005.
Pucéat, E., Lécuyer, C., Sheppard, S. M. F., Dromart, G., Reboulet, S., and Grandjean, P.: Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels, Paleoceanography, 18, 1–12, https://doi.org/10.1029/2002PA000823, 2003.
Püntener, C., Billon-Bruyat, J.-P., Bocat, L., Berger, J.-P., and Joyce, W. G.: Taxonomy and phylogeny of the turtle Tropidemys langii Rütimeyer, 1873, based on new specimens from the Kimmeridgian of the Swiss Jura Mountains, J. Vertebr. Paleontol., 34, 353–374, https://doi.org/10.1080/02724634.2013.804412, 2014.
Püntener, C., Anquetin, J., and Billon-Bruyat, J.-P.: Thalassemys bruntrutana n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland), and the paleobiogeography of the Thalassemydidae, Peer J., 3, e1282, https://doi.org/10.7717/peerj.1282, 2015.
Rees, J. and Underwood, C. J.: Hybodont sharks from the Middle Jurassic of the Inner Hebrides, Scotland, Trans. R. Soc. Edinb. Earth Sci., 96, 351–363, 2006.
Rees, J. and Underwood, C. J.: Hybodont sharks of the English Bathonian and Callovian (Middle Jurassic), Palaeontology, 51, 117–147, https://doi.org/10.1111/j.1475-4983.2007.00737.x, 2008.
Schaefer, K.: Variabilité de la morphologie dentaire des crocodiliens marins (Thalattosuchia) du Kimméridgien d'Ajoie (Jura, Suisse), M.S. thesis, University of Fribourg, Switzerland, 111 pp., 2012.
Schudack, U., Schudack, M., Marty, D., and Comment, G.: Kimmeridgian (Late Jurassic) ostracods from Highway A16 (NW Switzerland): taxonomy, stratigraphy, ecology, and biogeography, Swiss J. Geosci., 106, 371–395, https://doi.org/10.1007/s00015-013-0138-4, 2013.
Shackleton, N. and Kennett, J. P.: Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281, Initial Reports Deep Sea Drill. Proj., 29, 743–756, 1975.
Sharp, Z. D., Atudorei, V., and Furrer, H.: The effect of diagenesis on oxygen isotope ratios of biogenic phosphates, Am. J. Sci., 3000, 222–237, 2000.
Stahl, B. J.: Chondrichthyes III. Holocephali, Dr. Friedr., edited by: Schultze, H.-P., Handbook of Paleoichthyology, Volume E, Munich, 169 pp., 1999.
Sweetman, S. C. and Underwood, C. J.: A Neoselachian shark from the non-marine Wessex Formation (Wealden Group: Early Cretaceous, Barremian) of the Isle of Wight, southern England, Palaeontology, 49, 457–465, 2006.
Thies, D.: Placoid scales (Chondrichthyes: Elasmobranchii) from the Late Jurassic (Kimmeridgian) of northern Germany, J. Vertebr. Paleontol., 15, 463–481, 1995.
Underwood, C. J.: Sharks, rays and a chimaeroid from the Kimmeridgian (Late Jurassic) of Ringstead, Palaeontology, 45, 297–325, 2002.
Underwood, C. J.: Environmental controls on the distribution of neoselachian sharks and rays within the British Bathonian (Middle Jurassic), Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 107–126, https://doi.org/10.1016/S0031-0182(03)00663-1, 2004.
Underwood, C. J. and Cumbaa, S. L.: Chondrichthyans from a Cenomanian (Late Cretaceous) bonebed, Saskatchewan, Canada, Palaeontology, 53, 903–944, https://doi.org/10.1111/j.14754983.2010.00969.x, 2010.
Underwood, C. J. and Rees, J.: Selachian faunas from the Earliest Cretaceous Purbeck Groups of Dorset, Southern England, Spec. Pap. Palaeontol., 68, 107–119, 2002.
Underwood, C. J. and Ward, D. J.: Neoselachian sharks and rays from the British Bathonian (Middle Jurassic), Palaeontology, 47, 447–501, 2004.
Vennemann, T., Hegner, E., Cliff, G., and Benz, G. W.: Isotopic composition of recent shark teeth as a proxy for environmental conditions, Geochim. Cosmochim. Acta, 65, 1583–1599, 2001.
Vennemann, T. W., Fricke, H. C., Blake, R. E., O'Neil, J. R., and Colman, A.: Oxygen isotope analyses of phosphates: a comparison of techniques for analysis of Ag3PO4, Chem. Geol., 185, 321–336, 2002.
Waite, R., Marty, D., Strasser, A., and Wetzel, A.: The lost paleosols: Masked evidence for emergence and soil formation on the Kimmeridgian Jura platform (NW Switzerland), Palaeogeogr. Palaeoclimatol. Palaeoecol., 376, 73–90, 2013.
White, W. T. and Sommerville, E.: Elasmobranchs of Tropical Marine Ecosystems, in Sharks and their relatives II – Biodiversity, adaptive Physiology, and Conservation, edited by: Carrier, J. C., Musick, J. A., and Heithaus, M. R., 160–200, CRC Press, London New York, 2010.
Woodward, A. S.: Catalogue of the fossil fishes in the British Museum (Natural History), British Museum (Natural History) Dept. of Geology, 1889–1901, 1895.
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays,...
Altmetrics
Final-revised paper
Preprint