Articles | Volume 12, issue 23
https://doi.org/10.5194/bg-12-7279-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-12-7279-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut)
F. Bouchard
CORRESPONDING AUTHOR
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, G1K 9A9, Canada
Département de géographie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
I. Laurion
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, G1K 9A9, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
V. Prėskienis
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, G1K 9A9, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
D. Fortier
Département de géographie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
M. J. Whiticar
Biogeochemistry Facility, School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, V8W 3P6, Canada
Viewed
Total article views: 4,459 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Jul 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,722 | 1,559 | 178 | 4,459 | 140 | 174 |
- HTML: 2,722
- PDF: 1,559
- XML: 178
- Total: 4,459
- BibTeX: 140
- EndNote: 174
Total article views: 3,648 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Dec 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,309 | 1,180 | 159 | 3,648 | 134 | 165 |
- HTML: 2,309
- PDF: 1,180
- XML: 159
- Total: 3,648
- BibTeX: 134
- EndNote: 165
Total article views: 811 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Jul 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
413 | 379 | 19 | 811 | 149 | 6 | 9 |
- HTML: 413
- PDF: 379
- XML: 19
- Total: 811
- Supplement: 149
- BibTeX: 6
- EndNote: 9
Cited
55 citations as recorded by crossref.
- Biogeochemical Distinctiveness of Peatland Ponds, Thermokarst Waterbodies, and Lakes J. Arsenault et al. 10.1029/2021GL097492
- Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake L. Beckebanze et al. 10.5194/bg-19-1225-2022
- Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain S. Coulombe et al. 10.5194/tc-16-2837-2022
- Identification, spatial extent and distribution of fugitive gas migration on the well pad scale O. Forde et al. 10.1016/j.scitotenv.2018.10.217
- Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands F. Nwaishi et al. 10.1002/ppp.2067
- High methane emissions from thermokarst lakes in subarctic peatlands A. Matveev et al. 10.1002/lno.10311
- Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures P. Douglas et al. 10.5194/bg-18-3505-2021
- Oxygen depletion in subarctic peatland thaw lakes B. Deshpande et al. 10.1139/as-2016-0048
- Oxygen Depletion in Arctic Lakes: Circumpolar Trends, Biogeochemical Processes, and Implications of Climate Change Y. Klanten et al. 10.1029/2022GB007616
- Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds K. Negandhi et al. 10.1093/femsec/fiw117
- Radiocarbon Data Reveal Contrasting Sources for Carbon Fractions in Thermokarst Lakes and Rivers of Eastern Canada (Nunavik, Quebec) R. Gonzalez Moguel et al. 10.1029/2020JG005938
- Methane and carbon dioxide emissions from thermokarst lakes on mineral soils A. Matveev et al. 10.1139/as-2017-0047
- Stable Methane Isotopologues From Northern Lakes Suggest That Ebullition Is Dominated by Sub‐Lake Scale Processes M. Wik et al. 10.1029/2019JG005601
- Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback J. Dean et al. 10.1088/1748-9326/aaa1fe
- Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds V. Prėskienis et al. 10.1088/1748-9326/ad1433
- Roles of Thermokarst Lakes in a Warming World M. in 't Zandt et al. 10.1016/j.tim.2020.04.002
- Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation N. Perreault et al. 10.5194/bg-13-1237-2016
- Double‐counting challenges the accuracy of high‐latitude methane inventories B. Thornton et al. 10.1002/2016GL071772
- Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia) L. Hughes‐Allen et al. 10.1002/lno.11665
- Diverging pond dissolved organic matter characteristics yield similar CO2 flux potentials in a disturbed High Arctic landscape J. Heslop et al. 10.1088/1748-9326/abc913
- Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw M. Wauthy et al. 10.1002/lol2.10063
- Isotopic seasonality of fluvial-derived greenhouse gases implies active layer deepening M. Schwab et al. 10.1088/1748-9326/ad820f
- Coupling of stable carbon isotopic signature of methane and ebullitive fluxes in northern temperate lakes S. Thottathil & Y. Prairie 10.1016/j.scitotenv.2021.146117
- Spatial and Temporal Variation in Methane Concentrations, Fluxes, and Sources in Lakes in Arctic Alaska A. Townsend‐Small et al. 10.1002/2017JG004002
- Remote sensing evaluation of High Arctic wetland depletion following permafrost disturbance by thermo-erosion gullying processes N. Perreault et al. 10.1139/as-2016-0047
- Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution F. Bouchard et al. 10.1139/as-2016-0022
- Diachronic quantification of the local marine reservoir effect (MRE) using Loripes orbiculatus shells from Late Holocene lagoonal deposits at Puntone di Scarlino (Central Tuscany, Italy): Proposed roles of microbial diagenesis and sedimentation rates J. Sevink et al. 10.1016/j.quageo.2024.101505
- Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach S. Tank et al. 10.1002/ppp.2057
- Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape V. Prėskienis et al. 10.1002/lno.11660
- Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau G. Yang et al. 10.1038/s41467-023-38907-6
- Winter Accumulation of Methane and its Variable Timing of Release from Thermokarst Lakes in Subarctic Peatlands A. Matveev et al. 10.1029/2019JG005078
- Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models S. Chadburn et al. 10.5194/bg-14-5143-2017
- Automated Identification of Thermokarst Lakes Using Machine Learning in the Ice-Rich Permafrost Landscape of Central Yakutia (Eastern Siberia) L. Hughes-Allen et al. 10.3390/rs15051226
- Sentinel responses of Arctic freshwater systems to climate: linkages, evidence, and a roadmap for future research J. Saros et al. 10.1139/as-2022-0021
- PeRL: a circum-Arctic Permafrost Region Pond and Lake database S. Muster et al. 10.5194/essd-9-317-2017
- Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon C. Elder et al. 10.1038/s41558-017-0066-9
- Clumped Isotopes Link Older Carbon Substrates With Slower Rates of Methanogenesis in Northern Lakes P. Douglas et al. 10.1029/2019GL086756
- Uncharted waters: the rise of human-made aquatic environments in the age of the “Anthropocene” É. Saulnier-Talbot & I. Lavoie 10.1016/j.ancene.2018.07.003
- Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the Northern Permafrost Region C. Estop‐Aragonés et al. 10.1029/2020GB006672
- Aged soils contribute little to contemporary carbon cycling downstream of thawing permafrost peatlands A. Tanentzap et al. 10.1111/gcb.15756
- Emission of Volatile Organic Compounds to the Atmosphere from Photochemistry in Thermokarst Ponds in Subarctic Canada D. Fillion et al. 10.1021/acsearthspacechem.3c00336
- Physicochemical properties and greenhouse gas emissions of water body during the decomposition of Potamogeton crispus with different values of initial debris biomass H. Deng et al. 10.1007/s11356-021-15823-0
- 14,000-year Carbon Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake Productivity Changes L. Hughes-Allen et al. 10.3389/feart.2021.710257
- Large methane emission during ice-melt in spring from thermokarst lakes and ponds in the interior Tibetan Plateau L. Wang et al. 10.1016/j.catena.2023.107454
- Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic F. Bouchard et al. 10.5194/tc-14-2607-2020
- Simulated methane emissions from Arctic ponds are highly sensitive to warming Z. Rehder et al. 10.5194/bg-20-2837-2023
- Methane Fluxes Into Atmosphere from Fennoskandian Lakes L. Golubyatnikov & I. Mammarella 10.1134/S0001433818060075
- East Siberian Arctic inland waters emit mostly contemporary carbon J. Dean et al. 10.1038/s41467-020-15511-6
- Weak mineralization despite strong processing of dissolved organic matter in Eastern Arctic tundra ponds I. Laurion et al. 10.1002/lno.11634
- Assessment of the theoretical limit in instrumental detectability of northern high-latitude methane sources using <i>δ</i><sup>13</sup>C<sub>CH4</sub> atmospheric signals T. Thonat et al. 10.5194/acp-19-12141-2019
- Methane Emission From Global Lakes: New Spatiotemporal Data and Observation‐Driven Modeling of Methane Dynamics Indicates Lower Emissions M. Johnson et al. 10.1029/2022JG006793
- Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (14C) analysis J. Dean et al. 10.1016/j.watres.2017.03.009
- Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland E. Godin et al. 10.5194/bg-13-1439-2016
- Differences in Riverine and Pond Water Dissolved Organic Matter Composition and Sources in Canadian High Arctic Watersheds Affected by Active Layer Detachments J. Wang et al. 10.1021/acs.est.7b05506
- Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems J. Vonk et al. 10.5194/bg-12-7129-2015
54 citations as recorded by crossref.
- Biogeochemical Distinctiveness of Peatland Ponds, Thermokarst Waterbodies, and Lakes J. Arsenault et al. 10.1029/2021GL097492
- Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake L. Beckebanze et al. 10.5194/bg-19-1225-2022
- Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain S. Coulombe et al. 10.5194/tc-16-2837-2022
- Identification, spatial extent and distribution of fugitive gas migration on the well pad scale O. Forde et al. 10.1016/j.scitotenv.2018.10.217
- Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands F. Nwaishi et al. 10.1002/ppp.2067
- High methane emissions from thermokarst lakes in subarctic peatlands A. Matveev et al. 10.1002/lno.10311
- Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures P. Douglas et al. 10.5194/bg-18-3505-2021
- Oxygen depletion in subarctic peatland thaw lakes B. Deshpande et al. 10.1139/as-2016-0048
- Oxygen Depletion in Arctic Lakes: Circumpolar Trends, Biogeochemical Processes, and Implications of Climate Change Y. Klanten et al. 10.1029/2022GB007616
- Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds K. Negandhi et al. 10.1093/femsec/fiw117
- Radiocarbon Data Reveal Contrasting Sources for Carbon Fractions in Thermokarst Lakes and Rivers of Eastern Canada (Nunavik, Quebec) R. Gonzalez Moguel et al. 10.1029/2020JG005938
- Methane and carbon dioxide emissions from thermokarst lakes on mineral soils A. Matveev et al. 10.1139/as-2017-0047
- Stable Methane Isotopologues From Northern Lakes Suggest That Ebullition Is Dominated by Sub‐Lake Scale Processes M. Wik et al. 10.1029/2019JG005601
- Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback J. Dean et al. 10.1088/1748-9326/aaa1fe
- Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds V. Prėskienis et al. 10.1088/1748-9326/ad1433
- Roles of Thermokarst Lakes in a Warming World M. in 't Zandt et al. 10.1016/j.tim.2020.04.002
- Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation N. Perreault et al. 10.5194/bg-13-1237-2016
- Double‐counting challenges the accuracy of high‐latitude methane inventories B. Thornton et al. 10.1002/2016GL071772
- Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia) L. Hughes‐Allen et al. 10.1002/lno.11665
- Diverging pond dissolved organic matter characteristics yield similar CO2 flux potentials in a disturbed High Arctic landscape J. Heslop et al. 10.1088/1748-9326/abc913
- Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw M. Wauthy et al. 10.1002/lol2.10063
- Isotopic seasonality of fluvial-derived greenhouse gases implies active layer deepening M. Schwab et al. 10.1088/1748-9326/ad820f
- Coupling of stable carbon isotopic signature of methane and ebullitive fluxes in northern temperate lakes S. Thottathil & Y. Prairie 10.1016/j.scitotenv.2021.146117
- Spatial and Temporal Variation in Methane Concentrations, Fluxes, and Sources in Lakes in Arctic Alaska A. Townsend‐Small et al. 10.1002/2017JG004002
- Remote sensing evaluation of High Arctic wetland depletion following permafrost disturbance by thermo-erosion gullying processes N. Perreault et al. 10.1139/as-2016-0047
- Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution F. Bouchard et al. 10.1139/as-2016-0022
- Diachronic quantification of the local marine reservoir effect (MRE) using Loripes orbiculatus shells from Late Holocene lagoonal deposits at Puntone di Scarlino (Central Tuscany, Italy): Proposed roles of microbial diagenesis and sedimentation rates J. Sevink et al. 10.1016/j.quageo.2024.101505
- Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach S. Tank et al. 10.1002/ppp.2057
- Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape V. Prėskienis et al. 10.1002/lno.11660
- Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau G. Yang et al. 10.1038/s41467-023-38907-6
- Winter Accumulation of Methane and its Variable Timing of Release from Thermokarst Lakes in Subarctic Peatlands A. Matveev et al. 10.1029/2019JG005078
- Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models S. Chadburn et al. 10.5194/bg-14-5143-2017
- Automated Identification of Thermokarst Lakes Using Machine Learning in the Ice-Rich Permafrost Landscape of Central Yakutia (Eastern Siberia) L. Hughes-Allen et al. 10.3390/rs15051226
- Sentinel responses of Arctic freshwater systems to climate: linkages, evidence, and a roadmap for future research J. Saros et al. 10.1139/as-2022-0021
- PeRL: a circum-Arctic Permafrost Region Pond and Lake database S. Muster et al. 10.5194/essd-9-317-2017
- Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon C. Elder et al. 10.1038/s41558-017-0066-9
- Clumped Isotopes Link Older Carbon Substrates With Slower Rates of Methanogenesis in Northern Lakes P. Douglas et al. 10.1029/2019GL086756
- Uncharted waters: the rise of human-made aquatic environments in the age of the “Anthropocene” É. Saulnier-Talbot & I. Lavoie 10.1016/j.ancene.2018.07.003
- Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the Northern Permafrost Region C. Estop‐Aragonés et al. 10.1029/2020GB006672
- Aged soils contribute little to contemporary carbon cycling downstream of thawing permafrost peatlands A. Tanentzap et al. 10.1111/gcb.15756
- Emission of Volatile Organic Compounds to the Atmosphere from Photochemistry in Thermokarst Ponds in Subarctic Canada D. Fillion et al. 10.1021/acsearthspacechem.3c00336
- Physicochemical properties and greenhouse gas emissions of water body during the decomposition of Potamogeton crispus with different values of initial debris biomass H. Deng et al. 10.1007/s11356-021-15823-0
- 14,000-year Carbon Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake Productivity Changes L. Hughes-Allen et al. 10.3389/feart.2021.710257
- Large methane emission during ice-melt in spring from thermokarst lakes and ponds in the interior Tibetan Plateau L. Wang et al. 10.1016/j.catena.2023.107454
- Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic F. Bouchard et al. 10.5194/tc-14-2607-2020
- Simulated methane emissions from Arctic ponds are highly sensitive to warming Z. Rehder et al. 10.5194/bg-20-2837-2023
- Methane Fluxes Into Atmosphere from Fennoskandian Lakes L. Golubyatnikov & I. Mammarella 10.1134/S0001433818060075
- East Siberian Arctic inland waters emit mostly contemporary carbon J. Dean et al. 10.1038/s41467-020-15511-6
- Weak mineralization despite strong processing of dissolved organic matter in Eastern Arctic tundra ponds I. Laurion et al. 10.1002/lno.11634
- Assessment of the theoretical limit in instrumental detectability of northern high-latitude methane sources using <i>δ</i><sup>13</sup>C<sub>CH4</sub> atmospheric signals T. Thonat et al. 10.5194/acp-19-12141-2019
- Methane Emission From Global Lakes: New Spatiotemporal Data and Observation‐Driven Modeling of Methane Dynamics Indicates Lower Emissions M. Johnson et al. 10.1029/2022JG006793
- Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (14C) analysis J. Dean et al. 10.1016/j.watres.2017.03.009
- Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland E. Godin et al. 10.5194/bg-13-1439-2016
- Differences in Riverine and Pond Water Dissolved Organic Matter Composition and Sources in Canadian High Arctic Watersheds Affected by Active Layer Detachments J. Wang et al. 10.1021/acs.est.7b05506
1 citations as recorded by crossref.
Saved (final revised paper)
Saved (preprint)
Latest update: 06 Nov 2024
Short summary
We report on greenhouse gas (GHG) emissions in permafrost aquatic systems of the Eastern Canadian Arctic. We found strikingly different ages, sources and emission rates depending on aquatic system types. Small and shallow ponds generally emitted young (modern to a few centuries old) GHG, whereas larger and deeper lakes released much older GHG, in particular millennium-old CH4 from lake central areas. To our knowledge, this work is the first to report on GHG age from Canadian Arctic lakes.
We report on greenhouse gas (GHG) emissions in permafrost aquatic systems of the Eastern...
Special issue
Altmetrics
Final-revised paper
Preprint