Articles | Volume 12, issue 23
https://doi.org/10.5194/bg-12-7279-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-12-7279-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut)
F. Bouchard
CORRESPONDING AUTHOR
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, G1K 9A9, Canada
Département de géographie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
I. Laurion
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, G1K 9A9, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
V. Prėskienis
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, G1K 9A9, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
D. Fortier
Département de géographie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
M. J. Whiticar
Biogeochemistry Facility, School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, V8W 3P6, Canada
Related authors
Frédéric Bouchard, Daniel Fortier, Michel Paquette, Vincent Boucher, Reinhard Pienitz, and Isabelle Laurion
The Cryosphere, 14, 2607–2627, https://doi.org/10.5194/tc-14-2607-2020, https://doi.org/10.5194/tc-14-2607-2020, 2020
Short summary
Short summary
We combine lake mapping, landscape observations and sediment core analyses to document the evolution of a thermokarst (thaw) lake in the Canadian Arctic over the last millennia. We conclude that temperature is not the only driver of thermokarst development, as the lake likely started to form during a cooler period around 2000 years ago. The lake is now located in frozen layers with an organic carbon content that is an order of magnitude higher than the usually reported values across the Arctic.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015, https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
Short summary
This is a contribution about the future of permafrost research to the 3rd International Conference on Arctic Research Planning 2015 (ICARP III).
We summarize the top five research questions for the next decade of permafrost science from the perspective of early career researchers (ECRs).
We highlight the pathways and structural preconditions to address these research priorities.
This manuscript is an outcome of a community consultation conducted for and by ECRs on a global level.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel Gagnon, Daniel Fortier, Etienne Godin, and Audrey Veillette
EGUsphere, https://doi.org/10.5194/egusphere-2024-208, https://doi.org/10.5194/egusphere-2024-208, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated the impacts of two TEGs in the Canadian High Arctic. We found that while the formation of a TEG leaves permanent scars in landscapes, on the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Eliot Sicaud, Daniel Fortier, Jean-Pierre Dedieu, and Jan Franssen
Hydrol. Earth Syst. Sci., 28, 65–86, https://doi.org/10.5194/hess-28-65-2024, https://doi.org/10.5194/hess-28-65-2024, 2024
Short summary
Short summary
For vast northern watersheds, hydrological data are often sparse and incomplete. Our study used remote sensing and clustering to produce classifications of the George River watershed (GRW). Results show two types of subwatersheds with different hydrological behaviors. The GRW experienced a homogenization of subwatershed types likely due to an increase in vegetation productivity, which could explain the measured decline of 1 % (~0.16 km3 y−1) in the George River’s discharge since the mid-1970s.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Frédéric Bouchard, Daniel Fortier, Michel Paquette, Vincent Boucher, Reinhard Pienitz, and Isabelle Laurion
The Cryosphere, 14, 2607–2627, https://doi.org/10.5194/tc-14-2607-2020, https://doi.org/10.5194/tc-14-2607-2020, 2020
Short summary
Short summary
We combine lake mapping, landscape observations and sediment core analyses to document the evolution of a thermokarst (thaw) lake in the Canadian Arctic over the last millennia. We conclude that temperature is not the only driver of thermokarst development, as the lake likely started to form during a cooler period around 2000 years ago. The lake is now located in frozen layers with an organic carbon content that is an order of magnitude higher than the usually reported values across the Arctic.
Stephanie Coulombe, Daniel Fortier, Denis Lacelle, Mikhail Kanevskiy, and Yuri Shur
The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, https://doi.org/10.5194/tc-13-97-2019, 2019
Short summary
Short summary
This study provides a detailed description of relict glacier ice preserved in the permafrost of Bylot Island (Nunavut). We demonstrate that the 18O composition (-34.0 0.4 ‰) of the ice is consistent with the late Pleistocene age ice in the Barnes Ice Cap. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies could have significant impacts on permafrost geosystem landscape dynamics and ecosystems.
Gautier Davesne, Daniel Fortier, Florent Domine, and James T. Gray
The Cryosphere, 11, 1351–1370, https://doi.org/10.5194/tc-11-1351-2017, https://doi.org/10.5194/tc-11-1351-2017, 2017
Short summary
Short summary
This study presents data from Mont Jacques-Cartier, the highest summit in the Appalachians of south-eastern Canada, to demonstrate that the occurrence of contemporary permafrost body is associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. This study is an important preliminary step in modelling the regional spatial distribution of permafrost on the highest summits in eastern North America.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
Etienne Godin, Daniel Fortier, and Esther Lévesque
Biogeosciences, 13, 1439–1452, https://doi.org/10.5194/bg-13-1439-2016, https://doi.org/10.5194/bg-13-1439-2016, 2016
Short summary
Short summary
Bowl-shaped ice-wedge polygons in permafrost regions can retain snowmelt water and moisture in their center. On Bylot Island (NU, CA), a rapidly developing thermal erosion gully eroded the polygons' ridges, impacting the polygon centers' ground moisture and temperature, plant cover and species. An intact polygon was homogeneous in its center for the aforementioned elements, whereas eroded polygons had a varying response following the breach, with heterogeneity as their new equilibrium state.
A. Przytulska, J. Comte, S. Crevecoeur, C. Lovejoy, I. Laurion, and W. F. Vincent
Biogeosciences, 13, 13–26, https://doi.org/10.5194/bg-13-13-2016, https://doi.org/10.5194/bg-13-13-2016, 2016
Short summary
Short summary
Permafrost thaw lakes are a subject of increasing research interest given their abundance across the northern landscape. Our aim in the present study was to characterize the photosynthetic communities in a range of subarctic thaw lakes using a combination of HPLC analysis of algal and bacterial pigments, flow cytometry and molecular analysis. Our results showed that the thaw lakes contain diverse phototrophic communities and are a previously unrecognized habitat for abundant picophotoautotrophs.
T. Roiha, I. Laurion, and M. Rautio
Biogeosciences, 12, 7223–7237, https://doi.org/10.5194/bg-12-7223-2015, https://doi.org/10.5194/bg-12-7223-2015, 2015
Short summary
Short summary
Global warming thaws permafrost and accelerates the formation of thaw ponds in subarctic and arctic regions. These abundant ponds receive large terrestrial carbon inputs from the thawing and eroding permafrost, which is mainly used by bacterioplankton for the production of new biomass. Bacteria metabolism also produces high levels of CO2 and CH4, which make thaw ponds important sources of greenhouse gases to the atmosphere. We present carbon dynamics in thaw ponds in northern Quebec.
J. E. Vonk, S. E. Tank, W. B. Bowden, I. Laurion, W. F. Vincent, P. Alekseychik, M. Amyot, M. F. Billet, J. Canário, R. M. Cory, B. N. Deshpande, M. Helbig, M. Jammet, J. Karlsson, J. Larouche, G. MacMillan, M. Rautio, K. M. Walter Anthony, and K. P. Wickland
Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, https://doi.org/10.5194/bg-12-7129-2015, 2015
Short summary
Short summary
In this review, we give an overview of the current state of knowledge regarding how permafrost thaw affects aquatic systems. We describe the general impacts of thaw on aquatic ecosystems, pathways of organic matter and contaminant release and degradation, resulting emissions and burial, and effects on ecosystem structure and functioning. We conclude with an overview of potential climate effects and recommendations for future research.
M. Fritz, B. N. Deshpande, F. Bouchard, E. Högström, J. Malenfant-Lepage, A. Morgenstern, A. Nieuwendam, M. Oliva, M. Paquette, A. C. A. Rudy, M. B. Siewert, Y. Sjöberg, and S. Weege
The Cryosphere, 9, 1715–1720, https://doi.org/10.5194/tc-9-1715-2015, https://doi.org/10.5194/tc-9-1715-2015, 2015
Short summary
Short summary
This is a contribution about the future of permafrost research to the 3rd International Conference on Arctic Research Planning 2015 (ICARP III).
We summarize the top five research questions for the next decade of permafrost science from the perspective of early career researchers (ECRs).
We highlight the pathways and structural preconditions to address these research priorities.
This manuscript is an outcome of a community consultation conducted for and by ECRs on a global level.
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
Related subject area
Biogeochemistry: Greenhouse Gases
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Physicochemical Perturbation Increases Nitrous Oxide Production in Soils and Sediments
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Interannual and seasonal variability of the air-sea CO2 exchange at Utö in the coastal region of the Baltic Sea
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in Northern Norway
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Using automated transparent chambers to quantify CO2 emissions and potential emission reduction by water infiltration systems in drained coastal peatlands in the Netherlands
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic
Methane emissions due to reservoir flushing: a significant emission pathway?
Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska
Carbon monoxide (CO) cycling in the Fram Strait, Arctic Ocean
Post-flooding disturbance recovery promotes carbon capture in riparian zones
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Carbon emission and export from the Ket River, western Siberia
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland
Highest methane concentrations in an Arctic river linked to local terrestrial inputs
Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018
Trace gas fluxes from tidal salt marsh soils: implications for carbon–sulfur biogeochemistry
Spatial and temporal variation in δ13C values of methane emitted from a hemiboreal mire: methanogenesis, methanotrophy, and hysteresis
Intercomparison of methods to estimate gross primary production based on CO2 and COS flux measurements
Lateral carbon export has low impact on the net ecosystem carbon balance of a polygonal tundra catchment
The effect of static chamber base on N2O flux in drip irrigation
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
EGUsphere, https://doi.org/10.5194/egusphere-2024-448, https://doi.org/10.5194/egusphere-2024-448, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbance to soils and sediments. We demonstrate that the disturbance increases N2O production, the microbial community adapts to disturbance over time, an initial disturbance appears to confer resilience to subsequent disturbance.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2024-628, https://doi.org/10.5194/egusphere-2024-628, 2024
Short summary
Short summary
We present the 5-year (2017–2021) data set of the air-sea CO2 flux measurements made in the Archipelago Sea, the Baltic Sea. The study site was found to act as a net source of CO2 with an average annual net air-sea CO2 exchange of 27.1 gC m-2 y-1, indicating that this marine system respires carbon originated elsewhere. The annual CO2 emission varied between 18.2 in 2018 and 39.2 gC m-2 y-1 in 2017. These two years differed greatly in terms of the algal blooms and the pCO2 drawdown.
Silvie Lainela, Erik Jacobs, Stella-Theresa Stoicescu, Gregor Rehder, and Urmas Lips
EGUsphere, https://doi.org/10.5194/egusphere-2024-598, https://doi.org/10.5194/egusphere-2024-598, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the Baltic Sea offshore areas. Despite this high variability, caused mostly by coastal physical processes, the average annual air-sea CO2 fluxes differed only marginally between the sub-basins.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
EGUsphere, https://doi.org/10.5194/egusphere-2024-562, https://doi.org/10.5194/egusphere-2024-562, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4, or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 days to measure carbon loss. CO2 production was largest initially, while CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Ralf C. H. Aben, Daniel van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
EGUsphere, https://doi.org/10.5194/egusphere-2024-403, https://doi.org/10.5194/egusphere-2024-403, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. Raising the groundwater table can lower emissions. We used automated flux chamber measurements on 12 sites for up to 4 years and found a linear association between annual water table depth and CO2 emission. We also found that the average amount of carbon above the water table better predicted annual CO2 emission than water table depth and that water infiltration systems—used to effectively raise the water table—can be used to mitigate CO2 emissions.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023, https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary
Short summary
We conducted intensive spatial sampling of the hypertrophic fishpond to better understand the spatial dynamics of methane fluxes and environmental heterogeneity in fishponds. The diffusive fluxes of methane accounted for only a minor fraction of the total fluxes and both varied pronouncedly within the pond and over the studied summer season. This could be explained only by the water depth. Wind substantially affected temperature, oxygen and chlorophyll a distribution in the pond.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, and Frank Peeters
Biogeosciences, 20, 4057–4068, https://doi.org/10.5194/bg-20-4057-2023, https://doi.org/10.5194/bg-20-4057-2023, 2023
Short summary
Short summary
Based on a large dataset of seasonally resolved methane (CH4) pore water concentrations in a reservoir's sediment, we assess the significance of CH4 emissions due to reservoir flushing. In the studied reservoir, CH4 emissions caused by one flushing operation can represent 7 %–14 % of the annual CH4 emissions and depend on the timing of the flushing operation. In reservoirs with high sediment loadings, regular flushing may substantially contribute to the overall CH4 emissions.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, and Helge Niemann
Biogeosciences, 20, 3857–3872, https://doi.org/10.5194/bg-20-3857-2023, https://doi.org/10.5194/bg-20-3857-2023, 2023
Short summary
Short summary
This study investigates methane dynamics in the Wadden Sea. Our measurements revealed distinct variations triggered by seasonality and tidal forcing. The methane budget was higher in warmer seasons but surprisingly high in colder seasons. Methane dynamics were amplified during low tides, flushing the majority of methane into the North Sea or releasing it to the atmosphere. Methanotrophic activity was also elevated during low tide but mitigated only a small fraction of the methane efflux.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Yihong Zhu, Ruihua Liu, Huai Zhang, Shaoda Liu, Zhengfeng Zhang, Fei-Hai Yu, and Timothy G. Gregoire
Biogeosciences, 20, 1357–1370, https://doi.org/10.5194/bg-20-1357-2023, https://doi.org/10.5194/bg-20-1357-2023, 2023
Short summary
Short summary
With global warming, the risk of flooding is rising, but the response of the carbon cycle of aquatic and associated riparian systems
to flooding is still unclear. Based on the data collected in the Lijiang, we found that flooding would lead to significant carbon emissions of fluvial areas and riparian areas during flooding, but carbon capture may happen after flooding. In the riparian areas, the surviving vegetation, especially clonal plants, played a vital role in this transformation.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
Kukka-Maaria Kohonen, Roderick Dewar, Gianluca Tramontana, Aleksanteri Mauranen, Pasi Kolari, Linda M. J. Kooijmans, Dario Papale, Timo Vesala, and Ivan Mammarella
Biogeosciences, 19, 4067–4088, https://doi.org/10.5194/bg-19-4067-2022, https://doi.org/10.5194/bg-19-4067-2022, 2022
Short summary
Short summary
Four different methods for quantifying photosynthesis (GPP) at ecosystem scale were tested, of which two are based on carbon dioxide (CO2) and two on carbonyl sulfide (COS) flux measurements. CO2-based methods are traditional partitioning, and a new method uses machine learning. We introduce a novel method for calculating GPP from COS fluxes, with potentially better applicability than the former methods. Both COS-based methods gave on average higher GPP estimates than the CO2-based estimates.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Shahar Baram, Asher Bar-Tal, Alon Gal, Shmulik P. Friedman, and David Russo
Biogeosciences, 19, 3699–3711, https://doi.org/10.5194/bg-19-3699-2022, https://doi.org/10.5194/bg-19-3699-2022, 2022
Short summary
Short summary
Static chambers are the most common tool used to measure greenhouse gas (GHG) fluxes. We tested the impact of such chambers on nitrous oxide emissions in drip irrigation. Field measurements and 3-D simulations show that the chamber base drastically affects the water and nutrient distribution in the soil and hence the measured GHG fluxes. A nomogram is suggested to determine the optimal diameter of a cylindrical chamber that ensures minimal disturbance.
Cited articles
Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions, Global Biogeochem. Cycles, 26, https://doi.org/10.1029/2011gb004237, 2012.
Allard, M.: Geomorphological changes and permafrost dynamics: Key factors in changing arctic ecosystems. An example from Bylot Island, Nunavut, Canada, Geoscience Canada, 23, 205–212, 1996.
Alstad, K. P. and Whiticar, M. J.: Carbon and hydrogen isotope ratio characterization of methane dynamics for Fluxnet Peatland Ecosystems, Org. Geochem., 42, 548–558, https://doi.org/10.1016/j.orggeochem.2011.03.004, 2011.
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cycles, 18, GB4009, https://doi.org/10.1029/2004GB002238, 2004.
Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C.: Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions, J. Geophys. Res.-Biogeosciences, 113, 13, https://doi.org/10.1029/2007jg000608, 2008.
Blodau, C., Rees, R., Flessa, H., Rodionov, A., Guggenberger, G., Knorr, K. H., Shibistova, O., Zrazhevskaya, G., Mikheeva, N., and Kasansky, O. A.: A snapshot of CO2 and CH4 evolution in a thermokarst pond near Igarka, northern Siberia, J. Geophys. Res.-Biogeosciences, 113, G03023, https://doi.org/10.1029/2007jg000652, 2008.
Boereboom, T., Depoorter, M., Coppens, S., and Tison, J.-L.: Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release, Biogeosciences, 9, 827–838, https://doi.org/10.5194/bg-9-827-2012, 2012.
Bostock, H. S.: Physiographic subdivisions of Canada, in: Geology and economic minerals of Canada. Economic Geology Report No. 1., edited by: Douglas, R. J. W., Geological Survey of Canada, Ottawa, 9–30, 1970.
Bouchard, F., Fortier, D., Paquette, M., Bégin, P. N., Vincent, W. F., and Laurion, I.: Lake bottom imagery: a simple, fast and inexpensive method for surveying shallow freshwater ecosystems of permafrost regions, Proceedings of the 7th Canadian Permafrost Conference and the 68th Canadian Geotechnical Conference, Quebec City, 20–23 September 2015.
Bowes, H. L. and Hornibrook, E. R. C.: Emission of highly 13C-depleted methane from an upland blanket mire, Geophys. Res. Lett., 33, L04401, https://doi.org/10.1029/2005GL025209, 2006.
Brosius, L. S., Walter Anthony, K. M., Grosse, G., Chanton, J. P., Farquharson, L. M., Overduin, P. P., and Meyer, H.: Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation, J. Geophys. Res.-Biogeosciences, 117, G01022, https://doi.org/10.1029/2011jg001810, 2012.
Brown, J., Ferrians, O. J., Heginbottom, J. A., and Melnikov, E. S.: Circum-Arctic map of permafrost and ground-ice conditions, National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, Colorado, 1998.
Buell, M.-C.: CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada, MS Thesis, Environmental Resource Sciences, Trent University, 104 p., 2015.
Burn, C. R. and Kokelj, S. V.: The environment and permafrost of the Mackenzie Delta area, Permafrost Periglac., 20, 83–105, https://doi.org/10.1002/ppp.655, 2009.
CEN: Environmental data from Bylot Island in Nunavut, Canada, v. 1.4 (1992–2014), Nordicana D2, last access: 20 March 2015, https://doi.org/10.5885/45039SL-EE76C1BDAADC4890, 2014.
Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43, 647–656, 1998.
Duclos, I.: Milieux mésiques et secs de l'île Bylot, Nunavut (Canada): caractérisation et utilisation par la grande oie des neiges, MSc thesis, Université du Québec à Trois-Rivières (UQTR), 115 p., 2002.
Dyke, A. S. and Prest, V. K.: Late Wisconsinan and Holocene History of the Laurentide Ice Sheet, Géographie physique et Quaternaire, 41, 237–263, 1987.
Ellis, C. J., Rochefort, L., Gauthier, G., and Pienitz, R.: Paleoecological Evidence for Transitions between Contrasting Landforms in a Polygon-Patterned High Arctic Wetland, Arctic, Antarctic, Alpine Res., 40, 624–637, https://doi.org/10.1657/1523-0430(07-059)[ellis]2.0.co;2, 2008.
Environment Canada: 1981–2010 Climate Normals & Averages, http://climate.weather.gc.ca/climate_normals/index_e.html, last access: 10 February 2015.
Fortier, D. and Allard, M.: Late Holocene syngenetic ice-wedge polygons development, Bylot Island, Canadian Arctic Archipelago, Can. J. Earth Sci., 41, 997–1012, https://doi.org/10.1139/e04-031, 2004.
Fortier, D., Allard, M., and Pivot, F.: A late-Holocene record of loess deposition in ice-wedge polygons reflecting wind activity and ground moisture conditions, Bylot Island, eastern Canadian Arctic, Holocene, 16, 635–646, https://doi.org/10.1191/0959683606hl960rp, 2006.
Gao, X., Schlosser, C. A., Sokolov, A., Walter Anthony, K. W., Zhuang, Q. L., and Kicklighter, D.: Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback, Environ. Res. Lett., 8, 035014, https://doi.org/10.1088/1748-9326/8/3/035014, 2013.
Godin, E., Fortier, D., and Coulombe, S.: Effects of thermo-erosion gullying on hydrologic flow networks, discharge and soil loss, Environ. Res. Lett., 9, 105010, https://doi.org/10.1088/1748-9326/9/10/105010, 2014.
Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.: Microbial methane production in oxygenated water column of an oligotrophic lake, P. Natl. Acad. Sci. USA, 108, 19657–19661, https://doi.org/10.1073/pnas.1110716108, 2011.
Grosse, G., Jones, B., and Arp, C.: Thermokarst Lakes, Drainage, and Drained Basins, in: Treatise on Geomorphology, edited by: Shroder, J. F., Glacial and Periglacial Geomorphology, 8, Academic Press, San Diego, CA, 325–353, 2013.
Guo, L., Ping, C.-L., and Macdonald, R. W.: Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate, Geophys. Res. Lett., 34, L13603, https://doi.org/10.1029/2007GL030689, 2007.
Hesslein, R. H., Rudd, J. W. M., Kelly, C. A., Ramlal, P., and Hallard, K. A.: Carbon dioxide pressure in surface waters of Canadian lakes, in: Air-water mass transfer, edited by: Wilhelms, S. C. and Gulliver, J. S., American Society of Civil Engineers, New York, 413–431, 1991.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., and Martikainen, P. J.: Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609–621, https://doi.org/10.1016/S0045-6535(03)00243-1, 2003.
IPCC: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK, 2007.
Kankaala, P., Huotari, J., Tulonen, T., and Ojala, A.: Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape, Limnol. Oceanogr., 58, 1915–1930, https://doi.org/10.4319/lo.2013.58.6.1915, 2013.
Klassen, R. A.: Quaternary Geology and Glacial History of Bylot Island, Northwest Territories, Geological Survey of Canada, Ottawa, 1993.
Kling, G. W., Kipphut, G. W., and Miller, M. C.: The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 23–36, https://doi.org/10.1007/bf00013449, 1992.
Kotsyurbenko, O. R., Chin, K.-J., Glagolev, M. V., Stubner, S. Simankova, M. V., Nozhevnikova, A. N., and Conrad, R.: Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog, Environ. Microbiol., 6, 1159–1173, https://doi.org/10.1111/j.1462-2920.2004.00634.x, 2004.
Kutzbach, L., Wille, C., and Pfeiffer, E.-M.: The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia, Biogeosciences, 4, 869–890, https://doi.org/10.5194/bg-4-869-2007, 2007.
Lamoureux, S. F. and Lafrenière, M. J.: Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances, Environ. Res. Lett., 9, 045002, https://doi.org/10.1088/1748-9326/9/4/045002, 2014.
Langer, M., Westermann, S., Walter Anthony, K., Wischnewski, K., and Boike, J.: Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta, Biogeosciences, 12, 977–990, https://doi.org/10.5194/bg-12-977-2015, 2015.
Lauriol, B., Lacelle, D., St-Jean, M., Clark, I. D., and Zazula, G. D.: Late Quaternary paleoenvironments and growth of intrusive ice in eastern Beringia (Eagle River valley, northern Yukon, Canada), Can. J. Earth Sci., 47, 941–955, https://doi.org/10.1139/e10-012, 2010.
Laurion, I. and Mladenov, N.: Dissolved organic matter photolysis in Canadian arctic thaw ponds, Environ. Res. Lett., 8, 035026, https://doi.org/10.1088/1748-9326/8/3/035026, 2013.
Laurion, I., Vincent, W. F., MacIntyre, S., Retamal, L., Dupont, C., Francus, P., and Pienitz, R.: Variability in greenhouse gas emissions from permafrost thaw ponds, Limnol. Oceanogr., 55, 115–133, https://doi.org/10.4319/lo.2010.55.1.0115, 2010.
Liebner, S., Zeyer, J., Wagner, D., Schubert, C., Pfeiffer, E. M., and Knoblauch, C.: Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra, J. Ecology, 99, 914–922, https://doi.org/10.1111/j.1365-2745.2011.01823.x, 2011.
Mann, P. J., Eglinton, T. I., Mcintyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., Holmes, R. M., and Spencer, R. G. M.: Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks, Nature Communications, 6, 7856, https://doi.org/10.1038/ncomms8856, 2015.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge (UK) and New York (USA), 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013.
Negandhi, K.: Defining water sources and extent of evaporation of arctic thermokarst (thaw) ponds using water isotope tracers, Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement (ETE), Scientific and Technical Document No. I357, Québec City, 2013.
Negandhi, K., Laurion, I., Whiticar, M. J., Galand, P. E., Xu, X., and Lovejoy, C.: Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic, Plos One, 8, e78204, https://doi.org/10.1371/journal.pone.0078204, 2013.
Negandhi, K., Laurion, I., and Lovejoy, C.: Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic, Polar Biology, 37, 1669–1683, https://doi.org/10.1007/s00300-014-1555-1, 2014.
Pack, M. A., Xu, X., Lupascu, M., Kessler, J. D., and Czimczik, C. I.: A rapid method for preparing low volume CH4 and CO2 gas samples for 14C AMS analysis, Org. Geochem., 78, 89–98, https://doi.org/10.1016/j.orggeochem.2014.10.010, 2015.
Parks Canada: Sirmilik National Park of Canada, http://www.pc.gc.ca/eng/pn-np/nu/sirmilik/index.aspx, last access: 10 February 2014.
Paytan, A., Lecher, A. L., Dimova, N., Sparrow, K. J., Kodovska, F. G.-T., Murray, J., Tulaczyk, S., and Kessler, J. D.: Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study, P. Natl. Acad. Sci. USA, 112, 3636–3640, https://doi.org/10.1073/pnas.1417392112, 2015.
Prater, J. L., Chanton, J. P., and Whiting, G. J.: Variation in methane production pathways associated with permafrost decomposition in collapse scar bogs of Alberta, Canada, Global Biogeochem. Cycles, 21, GB4004, https://doi.org/10.1029/2006GB002866, 2007.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and Calibration of Post-Bomb 14C Data, Radiocarbon, 46, 1299–1304, 2004.
Roiha, T., Laurion, I., and Rautio, M.: Carbon dynamics in highly heterotrophic subarctic thaw ponds, Biogeosciences Discuss., 12, 11707–11749, https://doi.org/10.5194/bgd-12-11707-2015, 2015.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis, Permafrost Periglac., 21, 106–116, https://doi.org/10.1002/ppp.689, 2010.
Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S., and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska, Biogeosciences, 12, 3197–3223, https://doi.org/10.5194/bg-12-3197-2015, 2015.
Smith, S. and Burgess, M. M.: Ground Temperature Database for Northern Canada, Geological Survey of Canada, Ottawa, Open File Report 3954, 28 p., 2000.
Southon, J. and Santos, G. M.: Life with MC-SNICS. Part II: Further ion source development at the Keck carbon cycle AMS facility, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259, 88–93, https://doi.org/10.1016/j.nimb.2007.01.147, 2007.
Stainton, M. P., Capel, M. J., and Armstrong, F. A. J.: The chemical analysis of fresh water, 2nd Ed., Serv., C. F. M., Misc. Spec. Publ., 25, 1977.
Stepanenko, V. M., Machul'skaya, E. E., Glagolev, M. V., and Lykossov, V. N.: Numerical Modeling of Methane Emissions from Lakes in the Permafrost Zone, Izv. Atmos. Ocean. Phys., 47, 252–264, https://doi.org/10.1134/s0001433811020113, 2011.
Stuiver, M., and Polach, H. A.: Discussion: reporting 14C data, Radiocarbon, 19, 355–363, 1977.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Tedford, E. W., MacIntyre, S., Miller, S. D., and Czikowsky, M. J.: Similarity scaling of turbulence in a temperate lake during fall cooling, J. Geophys. Res.-Oceans, 119, 4689–4713, https://doi.org/10.1002/2014JC010135, 2014.
Tremblay, S., Bhiry, N., and Lavoie, M.: Long-term dynamics of a palsa in the sporadic permafrost zone of northwestern Quebec (Canada), Can. J. Earth Sci., 51, 500–509, https://doi.org/10.1139/cjes-2013-0123, 2014.
van Huissteden, J., Berrittella, C., Parmentier, F. J. W., Mi, Y., Maximov, T. C., and Dolman, A. J.: Methane emissions from permafrost thaw lakes limited by lake drainage, Nat. Clim. Chang., 1, 119–123, https://doi.org/10.1038/nclimate1101, 2011.
Vonk, J. E. and Gustafsson, O.: Permafrost-carbon complexities, Nature Geoscience, 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013.
Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G. M., Schade, J., Sobczak, W. V., Zimov, N., Zimov, S., Bulygina, E., Eglinton, T. I., and Holmes, R. M.: High biolability of ancient permafrost carbon upon thaw, Geophys. Res. Lett., 40, 2689–2693, https://doi.org/10.1002/grl.50348, 2013.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., D eshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems, Biogeosciences Discuss., 12, 10719–10815, https://doi.org/10.5194/bgd-12-10719-2015, 2015.
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin, F. S.: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040, 2006.
Walter, K. M., Smith, L. C., and Chapin, F. S.: Methane bubbling from northern lakes: present and future contributions to the global methane budget, Philos. T. R. Soc. A-Mathematical Physical and Engineering Sciences, 365, 1657–1676, https://doi.org/10.1098/rsta.2007.2036, 2007.
Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G., and Zimov, S. A.: Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages, J. Geophys. Res.-Biogeosciences, 113, G00A08, https://doi.org/10.1029/2007jg000569, 2008.
Walter-Anthony, K. M. and Anthony, P.: Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models, J. Geophys. Res.-Biogeosciences, 118, 1015–1034, https://doi.org/10.1002/jgrg.20087, 2013.
Walter-Anthony, K. M., Vas, D. A., Brosius, L., Chapin, F. S., Zimov, S. A., and Zhuang, Q. L.: Estimating methane emissions from northern lakes using ice-bubble surveys, Limnol. Oceanogr.-Methods, 8, 592–609, https://doi.org/10.4319/lom.2010.8.0592, 2010.
Wanninkhof, R.: Relationship between wind-speed and gas-exchange over the ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, https://doi.org/10.1029/92jc00188, 1992.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chemical Geology, 161, 291–314, https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–-isotope evidence, Geochim. Cosmochim. Ac., 50, 693–709, https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
Wik, M., Crill, P. M., Bastviken, D., Danielsson, A., and Norback, E.: Bubbles trapped in arctic lake ice: Potential implications for methane emissions, J. Geophys. Res.-Biogeosciences, 116, 10, https://doi.org/10.1029/2011jg001761, 2011.
Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear measurements of ebullitive methane flux from three subarctic lakes, J. Geophys. Res.-Biogeosciences, 118, 1307–1321, https://doi.org/10.1002/jgrg.20103, 2013.
Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., and Liu, J. C.: Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259, 320–329, https://doi.org/10.1016/j.nimb.2007.01.175, 2007.
Zimov, S. A., Voropaev, Y. V., Semiletov, I. P., Davidov, S. P., Prosiannikov, S. F., Chapin, F. S., Chapin, M. C., Trumbore, S., and Tyler, S.: North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon, Science, 277, 800–802, https://doi.org/10.1126/science.277.5327.800, 1997.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the Global Carbon Budget, Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908, 2006.
Zona, D., Lipson, D. A., Paw, K. T., Oberbauer, S. F., Olivas, P., Gioli, B., and Oechel, W. C.: Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding, Global Biogeochem. Cycles, 26, GB2004, https://doi.org/10.1029/2011gb004037, 2012.
Short summary
We report on greenhouse gas (GHG) emissions in permafrost aquatic systems of the Eastern Canadian Arctic. We found strikingly different ages, sources and emission rates depending on aquatic system types. Small and shallow ponds generally emitted young (modern to a few centuries old) GHG, whereas larger and deeper lakes released much older GHG, in particular millennium-old CH4 from lake central areas. To our knowledge, this work is the first to report on GHG age from Canadian Arctic lakes.
We report on greenhouse gas (GHG) emissions in permafrost aquatic systems of the Eastern...
Special issue
Altmetrics
Final-revised paper
Preprint