Articles | Volume 13, issue 10
Biogeosciences, 13, 2945–2958, 2016
https://doi.org/10.5194/bg-13-2945-2016
Biogeosciences, 13, 2945–2958, 2016
https://doi.org/10.5194/bg-13-2945-2016

Research article 19 May 2016

Research article | 19 May 2016

Contributions of dynamic environmental signals during life-cycle transitions to early life-history traits in lodgepole pine (Pinus contorta Dougl.)

Yang Liu, Tongli Wang, and Yousry A. El-Kassaby Yang Liu et al.
  • Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada

Abstract. Environmental signals are important triggers in the life-cycle transitions and play a crucial role in the life-history evolution. Yet very little is known about the leading ecological factors contributing to the variations of life-history traits in perennial plants. This paper explores both the causes and consequences for the evolution of life-history traits (i.e., seed dormancy and size) in lodgepole pine (Pinus contorta Dougl.) across British Columbia (B.C.), Canada. We selected 83 logepole pine populations covering 22 ecosystem zones of B.C. and through their geographic coordinate, 197 climatic variables were generated accordingly for the reference (1961–1990) and future (2041–2070) periods. We found that dynamic climatic variables rather than constant geographic variables are the true environmental driving forces in seed dormancy and size variations and thus provide reliable predictors in response to global climate change. Evapotranspiration and precipitation in the plant-to-seed chronology are the most critical climate variables for seed dormancy and size variations, respectively. Hence, we predicted that levels of seed dormancy in lodgepole pine would increase across large tracts of B.C. in 2050s. Winter-chilling is able to increase the magnitude of life-history plasticity and lower the bet-hedge strategy in the seed-to-plant transition; however, winter-chilling is likely to be insufficient in the north of 49° N in 2050s, which may delay germination while unfavorable conditions during dry summers may result in adverse consequences in the survival of seedlings owing to extended germination span. These findings provide useful information to studies related to assessments of seed transfer and tree adaptation.

Download
Short summary
We explored the causes and consequences for the evolution of life-history traits (seed dormancy & size) in lodgepole pine in British Columbia, Canada and found that dynamic climate rather than constant geography are the environmental driving forces in seed dormancy and size variations. Evapotranspiration and precipitation are the most critical climate variables and we predicted that levels of seed dormancy in lodgepole pine would increase across large geographical tracts in 2050s.
Altmetrics
Final-revised paper
Preprint