Articles | Volume 13, issue 12
https://doi.org/10.5194/bg-13-3677-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-3677-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Water Studies Centre, School of Chemistry, Monash
University, Clayton, VIC 3800, Australia
Miles Jennings
Water Studies Centre, School of Chemistry, Monash
University, Clayton, VIC 3800, Australia
Daryl P. Holland
Water Studies Centre, School of Chemistry, Monash
University, Clayton, VIC 3800, Australia
John Beardall
School of Biological Sciences, Monash University,
Clayton, VIC 3800, Australia
Christy Briles
Geography and Environmental Sciences, University of
Colorado, Denver, CO 80217-3364, USA
Atun Zawadzki
ANSTO Institute for Environmental Research, Lucas
Heights, NSW 2232, Australia
Phuong Doan
Water Research Network, Federation University Australia,
Ballarat, VIC 3350, Australia
now at: Faculty of Biology – Environment, The University of
Da Nang, Đa Nǎng, Vietnam
Keely Mills
Water Research Network, Federation University Australia,
Ballarat, VIC 3350, Australia
British Geological Survey, Keyworth, Nottingham, NG12
5GG, UK
Peter Gell
Water Research Network, Federation University Australia,
Ballarat, VIC 3350, Australia
Related authors
Philipp A. Nauer, Eleonora Chiri, Thanavit Jirapanjawat, Chris Greening, and Perran L. M. Cook
Biogeosciences, 18, 729–737, https://doi.org/10.5194/bg-18-729-2021, https://doi.org/10.5194/bg-18-729-2021, 2021
Short summary
Short summary
Hydrogen (H2) and carbon monoxide (CO) are atmospheric trace gases cycled via microbial metabolisms. We observed strong H2 and CO contamination from rubber septa used to seal common gas sample storage vials. Here we propose a simple and inexpensive modification of such vials to allow reliable storage of H2, CO and methane trace-gas samples for timescales of weeks to months, thus enabling extensive field campaigns to investigate H2 and CO biogeochemistry in remote areas.
Douglas G. Russell, Wei Wen Wong, and Perran L. M. Cook
Biogeosciences, 15, 7225–7234, https://doi.org/10.5194/bg-15-7225-2018, https://doi.org/10.5194/bg-15-7225-2018, 2018
Short summary
Short summary
Nitrogen is an important nutrient in marine environments and is continually converted from one form to another. One way these processes can be investigated is by looking at the ratio of the 15N and 14N stable isotopes of different nitrogen-containing compounds. To date few studies have compared these ratios in seagrass beds, their associated sediments and the porewater NH4+ pool. The strong relationship between these nitrogen pools suggests that nitrogen is tightly recycled within seagrass beds.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Douglas G. Russell, Adam J. Kessler, Wei Wen Wong, and Perran L. M. Cook
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-418, https://doi.org/10.5194/bg-2017-418, 2017
Preprint withdrawn
Short summary
Short summary
Using discrete measurements to investigate nitrogen cycling in marine environments can be problematic as such extrapolations mightn't accurately describe how nitrogen is processed over large spatial and temporal scales. The ability of a stable isotope and mass balance to overcome these issues was investigated, with results being compared to actual sedimentary nitrogen measurements. The closeness of the results suggested that the model developed accurately described the cycling of nitrogen.
Yafei Zhu, Andrew McCowan, and Perran L. M. Cook
Biogeosciences, 14, 4423–4433, https://doi.org/10.5194/bg-14-4423-2017, https://doi.org/10.5194/bg-14-4423-2017, 2017
Short summary
Short summary
We used a 3-D coupled hydrodynamic–biogeochemical water quality model to investigate the effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system. The results highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Mately, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-328, https://doi.org/10.5194/essd-2024-328, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper presents SahulCHAR, a new collection of palaeofire (ancient fire) records from Australia, New Guinea, and New Zealand. SahulCHAR Version 1 contains 687 records of sedimentary charcoal or black carbon, including digitized data, records from existing databases, and original author-submitted data. SahulCHAR is a much-needed update on past charcoal compilations that will also provide greater representation of records from this region in future global syntheses to understand past fire.
Philipp A. Nauer, Eleonora Chiri, Thanavit Jirapanjawat, Chris Greening, and Perran L. M. Cook
Biogeosciences, 18, 729–737, https://doi.org/10.5194/bg-18-729-2021, https://doi.org/10.5194/bg-18-729-2021, 2021
Short summary
Short summary
Hydrogen (H2) and carbon monoxide (CO) are atmospheric trace gases cycled via microbial metabolisms. We observed strong H2 and CO contamination from rubber septa used to seal common gas sample storage vials. Here we propose a simple and inexpensive modification of such vials to allow reliable storage of H2, CO and methane trace-gas samples for timescales of weeks to months, thus enabling extensive field campaigns to investigate H2 and CO biogeochemistry in remote areas.
Jiekai Xu, John Beardall, and Kunshan Gao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-4, https://doi.org/10.5194/bg-2019-4, 2019
Revised manuscript not accepted
Short summary
Short summary
A lot of papers studying Ocean acidification (OA) have been published while no related reports can be found on the combined effects of OA with decreased salinity on coccolithophores yet.Thus, we investigated the physiological responses of an Emiliania huxleyi strain grown at 2CO2 concentrations and 3 levels of salinity and found cells could tolerate reduced salinity under OA as its increased light capturing capability, which suggests a potential niche extension of coccolithophores in the future.
Douglas G. Russell, Wei Wen Wong, and Perran L. M. Cook
Biogeosciences, 15, 7225–7234, https://doi.org/10.5194/bg-15-7225-2018, https://doi.org/10.5194/bg-15-7225-2018, 2018
Short summary
Short summary
Nitrogen is an important nutrient in marine environments and is continually converted from one form to another. One way these processes can be investigated is by looking at the ratio of the 15N and 14N stable isotopes of different nitrogen-containing compounds. To date few studies have compared these ratios in seagrass beds, their associated sediments and the porewater NH4+ pool. The strong relationship between these nitrogen pools suggests that nitrogen is tightly recycled within seagrass beds.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Guang Gao, John Beardall, Menglin Bao, Can Wang, Wangwang Ren, and Juntian Xu
Biogeosciences, 15, 3409–3420, https://doi.org/10.5194/bg-15-3409-2018, https://doi.org/10.5194/bg-15-3409-2018, 2018
Short summary
Short summary
We investigated the physiological responses of a green tide alga to the combination of ocean acidification and nutrient limitation. Elevated pCO2 did not affect the growth rate when cultured under nutrient replete conditions but reduced it under P limitation. P limitation resulted in a larger inhibition in growth for sporelings compared to adult plants. These findings indicate that ocean acidification and nutrient limitation may hinder the occurrence of green tides in future ocean environment.
Douglas G. Russell, Adam J. Kessler, Wei Wen Wong, and Perran L. M. Cook
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-418, https://doi.org/10.5194/bg-2017-418, 2017
Preprint withdrawn
Short summary
Short summary
Using discrete measurements to investigate nitrogen cycling in marine environments can be problematic as such extrapolations mightn't accurately describe how nitrogen is processed over large spatial and temporal scales. The ability of a stable isotope and mass balance to overcome these issues was investigated, with results being compared to actual sedimentary nitrogen measurements. The closeness of the results suggested that the model developed accurately described the cycling of nitrogen.
Yaping Wu, Furong Yue, Juntian Xu, and John Beardall
Biogeosciences, 14, 5029–5037, https://doi.org/10.5194/bg-14-5029-2017, https://doi.org/10.5194/bg-14-5029-2017, 2017
Short summary
Short summary
Diatoms were less inhibited by UV radiation under moderately increased temperature. Benthic diatoms were more resistant to UV radiation than planktonic species under extremely high temperature as found in the intertidal zone. These differential responses were linked to repair and damage processes of photosystem II.
Yafei Zhu, Andrew McCowan, and Perran L. M. Cook
Biogeosciences, 14, 4423–4433, https://doi.org/10.5194/bg-14-4423-2017, https://doi.org/10.5194/bg-14-4423-2017, 2017
Short summary
Short summary
We used a 3-D coupled hydrodynamic–biogeochemical water quality model to investigate the effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system. The results highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Perran Louis Miall Cook, Adam John Kessler, and Bradley David Eyre
Biogeosciences, 14, 4061–4069, https://doi.org/10.5194/bg-14-4061-2017, https://doi.org/10.5194/bg-14-4061-2017, 2017
Short summary
Short summary
Nitrogen is the key nutrient that typically limits productivity in coastal waters. One of the key controls on the amount of bioavailable nitrogen is the process of denitrification, which converts nitrate (bioavailable) into nitrogen gas. Previous studies suggest high rates of denitrification may take place within carbonate sediments, and one explanation for this is that this process may take place within the sand grains. Here we show evidence to support this hypothesis.
Y. Li, S. Zhuang, Y. Wu, H. Ren, F. Cheng, X. Lin, K. Wang, J. Beardall, and K. Gao
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-15809-2015, https://doi.org/10.5194/bgd-12-15809-2015, 2015
Revised manuscript not accepted
O. Sackett, L. Armand, J. Beardall, R. Hill, M. Doblin, C. Connelly, J. Howes, B. Stuart, P. Ralph, and P. Heraud
Biogeosciences, 11, 5795–5808, https://doi.org/10.5194/bg-11-5795-2014, https://doi.org/10.5194/bg-11-5795-2014, 2014
S. Chen, J. Beardall, and K. Gao
Biogeosciences, 11, 4829–4837, https://doi.org/10.5194/bg-11-4829-2014, https://doi.org/10.5194/bg-11-4829-2014, 2014
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Appleby, P.: Chronostratigraphic techniques in recent sediments, in: Tracking environmental change using lake sediments, Vol 1: Basin analysis, coring and chronological techniques, edited by: Last, W. and Smol, J., Kluwer Academic Publishers, Dordrecht, 2001.
Atahan, P., Heijnis, H., Dodson, J., Grice, K., Le Metayer, P., Taffs, K., Hembrow, S., Woltering, M., and Zawadzki, A.: Pollen, biomarker and stable isotope evidence of late Quaternary environmental change at Lake McKenzie, southeast Queensland, J. Paleolimnol., 53, 139–156, https://doi.org/10.1007/s10933-014-9813-3, 2015.
Battarbee, R. W.: Diatom Analysis, in: Handbook of Holocene Palaeoecology and Palaeohydrology, edited by: Berglund, B. E., John Wiley & Sons., Chichester, 1986.
Bianchi, T. S., Engelhaupt, E., Westman, P., Andren, T., Rolff, C., and Elmgren, R.: Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?, Limnol. Oceanogr., 45, 716–726, 2000.
Bird, E. C. F.: The geomorphology of the Gippsland Lakes region Ministry for Conservation, Victoria, 158 pp., 1978.
Chen, N., Bianchi, T., McKee, B., and Bland, J.: Historical trends of hypoxia on the Louisiana shelf: Application of pigments as biomarkers, Org. Geochem., 32, 543–561, 2001.
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E.: ECOLOGY Controlling Eutrophication: Nitrogen and Phosphorus, Science, 323, 1014–1015, https://doi.org/10.1126/science.1167755, 2009.
Cook, P. L. M. and Holland, D. P.: Long term nutrient loads and phytoplankton dynamics in a large temperate Australian lagoon system affected by recurring blooms of Nodularia spumigena, Biogeochemistry, 107, 261–274, 2012.
Cook, P. L. M., Holland, D. P., and Longmore, A. R.: Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon, Limnol. Oceanogr., 55, 1123–1133, 2010.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926–929, 2008.
Foged, N.: Diatoms in eastern Australia, Bibliotheca Phycologica Series No. 41, Lubrecht & Cramer Ltd, 1978.
Fritz, S. C., Juggins, S., and Battarbee, R. W.: Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations, Can. J. Fish. Aquat. Sci., 50, 1844–1856, 1993.
Funkey, C. P., Conley, D. J., Reuss, N. S., Humborg, C., Jilbert, T., and Slomp, C. P.: Hypoxia Sustains Cyanobacteria Blooms in the Baltic Sea, Environ. Sci. Technol., 48, 2598–2602, https://doi.org/10.1021/es404395a, 2014.
Gammage, W.: The Largest Estate on Earth: How Aborigines Made Australia, Allen and Unwin, Sydney, 434 pp., 2011.
Grayson, R. B., Tan, K. S., and Wealands, S.: Pre-European load estimates into the Gippsland Lakes, University of Melbourne, 5, 2001.
Harris, G., Batley, G., Webster, I. T., Molloy, R., and Fox, D.: Gippsland Lakes Environmental Audit: Review of water quality and status of the aquatic ecosystems of the Gippsland Lakes, CSIRO, Melbourne, 1988.
Head, L.: The Holocene prehistory of a coastal wetland system: Discovery bay, southeastern Australia, Human Ecol., 15, 435–462, 1987.
Holland, D. P., Van Erp, I. C., Beardall, J., and Cook, P. L. M.: Environmental controls on the growth of the nitrogen-fixing cyanobacterium Nodularia spumigena Mertens in a temperate lagoon system in South-Eastern Australia, Mar. Ecol.-Prog. Ser., 461, 47–57, 2012.
Jeffrey, S. W. and Vesk, M.: Introduction to marine phytoplankton and their pigment signatures, in: Phytoplankton Pigments in Oceanography: Guidlines to Modern Methods, edited by: Jeffrey, S. W., Mantoura, R. F. C., and Wright, S. W., UNESCO Publishing, Paris, 37–84, 1997.
Juggins, S.: C2 user Guide: Software for Ecological and Palaeoecological Data Analysis and Visualisation, University of Newcastle, Newcastle upon Tyne, United Kingdom, 2003.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 1. Teil, Naviculaceae, Süßwasserflora von Mitteleuropa, Band 2/1, Spektrum Akademischer Verlag, Stuttgart, 1986.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 2. Teil, Bacillariaceae, Epithemiaceae, Surirellaceae, Süßwasserflora von Mitteleuropa, Band 2/2, Spektrum Akademischer Verlag, Stuttgart, 1988.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 4. Teil, Achnanthaceae, kritsche erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamliteraturverzeichnis, Süßwasserflora von Mitteleuropa, Band 2/4, Spektrum Akademischer Verlag, Stuttgart, 1991a.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 3. Teil, Centrales, Fragilariaceae, Eunotiaceae, Süßwasserflora von Mitteleuropa, Band 2/3, Spektrum Akademischer Verlag, Stuttgart, 1991b.
Leslie, C. and Hancock, G.: Estimatin the date corresponding to the horizon of the first detection of 137Cs and 239 + 240Pu in sediment cores, J. Environ. Radioactiv., 99, 483–490, 2008.
Lukatelich, R. J. and McComb, A. J.: Nutrient levels and the development of diatom and blue-green-algal blooms in a shallow Australian estuary, J. Plankton Res., 8, 597–618, 1986.
Mantoura, R. F. C. and Llewellyn, C. A.: The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography, Anal. Chim. Ac., 151, 297–314, https://doi.org/10.1016/S0003-2670(00)80092-6, 1983.
McComb, A. J. and Humphries, R.: Loss of nutrients from catchments and their ecological impacts in the Peel-Harvey estuarine system, Western Australia, Estuaries, 15, 529–537, 1992.
Mills, K., Gell, P., Gergis, J., Baker, P. J., Finlayson, C. M., Hesse, P. P., Jones, R., Kershaw, P., Pearson, S., Treble, P. C., Barr, C., Brookhouse, M., Drysdale, R., McDonald, J., Haberle, S., Reid, M., Thoms, M., and Tibby, J.: Paleoclimate studies and natural-resource management in the Murray-Darling Basin II, Unravelling human impacts and climate variability, Aust. J. Earth Sci., 60, 561–571, 2013.
Mooney, S. D., Harrison, S. P., Bertlein, P. J., Daniau, A.-L., Stevenson, J., Brownlie, K. C., Buckman, S., Cupper, M., luly, J., Black, M., Colhoun, E., D'Costa, D., Dodson, J., Haberle, S., Hope, G. S., Kershaw, P., Kenyon, C., Mckenzie, M., and Williams, N.: Late Quaternary fire regimes of Australasia, Quaternary Sci. Rev., 30, 28–46, 2011.
Moroka Consulting: Understanding the Environmental Water Requirements of the Gippsland Lakes Systems, Stage 2: Input to the Gippsland region Sustainable Water Strategy, Report to East and West Gippsland Catchment Management Authorities, Traralgon, Moroka, Melbourne, 2010.
Paerl, H. W.: Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-Impacted World, Life, 4, 988–1012, https://doi.org/10.3390/life4040988, 2014.
Paerl, H. W. and Paul, V. J.: Climate change: Links to global expansion of harmful cyanobacteria, Water Res., 46, 1349–1363, https://doi.org/10.1016/j.watres.2011.08.002, 2012.
Saunders, K. M., Hodgson, D. A., Harrison, J., and McMinn, A.: Palaeoecological tools for improving the management of coastal ecosystems: a case study from Lake King (Gippsland Lakes) Australia, J. Paleolimnol., 40, 33–47, https://doi.org/10.1007/s10933-007-9132-z, 2008.
Scicluna, T. R., Woodland, R. J., Zhu, Y., Grace, M. R., and Cook, P. L. M.: Deep dynamic pools of phosphorus in the sediment of a temperate lagoon with recurring blooms of diazotrophic cyanobacteria, Limnol. Oceanogr., 60, 2185–2196, 2015.
Sellner, K. G.: Physiology, ecology, and toxic properties of marine cyanobacteria blooms, Limnol. Oceanogr., 42, 1089–1104, 1997.
Sonneman, J. A., Sincock, A., Fluin, J., Reid, M., Newall, P., Tibby, J., and Gell, P.: An illustrated guide to common stream diatom species from temperate Australia, Cooperative Research Centre for Freshwater Ecology Identification Guide No. 33., 2000.
Synan, P.: The Lakes: Highways of Water, Landmark Press, Drouin, 235 pp., 1989.
Wildsmith, M. D., Rose, T. H., Potter, I. C., Warwick, R. M., Clarke, K. R., and Valesini, F. J.: Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication, Mar. Pollut. Bull., 58, 1250–1262, https://doi.org/10.1016/j.marpolbul.2009.06.008, 2009.
Woodland, R. J. and Cook, P. L. M.: Using stable isotope ratios to estimate atmospheric nitrogen fixed by cyanobacteria at the ecosystem-scale, Ecol. Appl., 24, 539–547, https://doi.org/10.1890/13-0947.1, 2014.
Woodland, R. J., Holland, D. P., Beardall, J., Smith, J., Scicluna, T. R., and Cook, P. L. M.: Assimilation of Diazotrophic nitrogen into food webs, Plos ONE, 8, e67588, https://doi.org/10.1371/journal.pone.0067588, 2013.
Zillén, L. and Conley, D. J.: Hypoxia and cyanobacteria blooms – are they really natural features of the late Holocene history of the Baltic Sea?, Biogeosciences, 7, 2567–2580, https://doi.org/10.5194/bg-7-2567-2010, 2010.
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green...
Altmetrics
Final-revised paper
Preprint