Articles | Volume 13, issue 15
https://doi.org/10.5194/bg-13-4513-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-4513-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Low Florida coral calcification rates in the Plio-Pleistocene
Thomas C. Brachert
CORRESPONDING AUTHOR
Institut für Geophysik und Geologie, Universität
Leipzig, Leipzig, Germany
Markus Reuter
Institute of Earth Sciences, NAWI Graz Geocentre,
University of Graz, Graz, Austria
Stefan Krüger
Institut für Geophysik und Geologie, Universität
Leipzig, Leipzig, Germany
James S. Klaus
Department of Geological Sciences, University of Miami,
Coral Gables, Florida, USA
Kevin Helmle
Oceanographic Center, Nova Southeastern University, Fort
Lauderdale, Florida, USA
Janice M. Lough
Australian Institute of Marine Science, Townsville MC,
Australia
Related authors
Philipp M. Spreter, Markus Reuter, Regina Mertz-Kraus, Oliver Taylor, and Thomas C. Brachert
Biogeosciences, 19, 3559–3573, https://doi.org/10.5194/bg-19-3559-2022, https://doi.org/10.5194/bg-19-3559-2022, 2022
Short summary
Short summary
We investigate the calcification rate of reef corals from an upwelling zone, where low seawater pH and high nutrient concentrations represent a recent analogue for the future ocean. Calcification rate of the corals largely relies on extension growth. Variable responses of extension growth to nutrients either compensate or exacerbate negative effects of weak skeletal thickening associated with low seawater pH – a mechanism that is critical for the persistence of coral reefs under global change.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
Philipp M. Spreter, Markus Reuter, Regina Mertz-Kraus, Oliver Taylor, and Thomas C. Brachert
Biogeosciences, 19, 3559–3573, https://doi.org/10.5194/bg-19-3559-2022, https://doi.org/10.5194/bg-19-3559-2022, 2022
Short summary
Short summary
We investigate the calcification rate of reef corals from an upwelling zone, where low seawater pH and high nutrient concentrations represent a recent analogue for the future ocean. Calcification rate of the corals largely relies on extension growth. Variable responses of extension growth to nutrients either compensate or exacerbate negative effects of weak skeletal thickening associated with low seawater pH – a mechanism that is critical for the persistence of coral reefs under global change.
Jens Zinke, Juan P. D'Olivo, Christoph J. Gey, Malcolm T. McCulloch, J. Henrich Bruggemann, Janice M. Lough, and Mireille M. M. Guillaume
Biogeosciences, 16, 695–712, https://doi.org/10.5194/bg-16-695-2019, https://doi.org/10.5194/bg-16-695-2019, 2019
Short summary
Short summary
Here we report seasonally resolved sea surface temperature (SST) reconstructions for the southern Mozambique Channel in the SW Indian Ocean, a region located along the thermohaline ocean surface circulation route, based on multi-trace-element temperature proxy records preserved in two Porites sp. coral cores for the past 42 years. Particularly, we show the suitability of both separate and combined Sr / Ca and Li / Mg proxies for improved multielement SST reconstructions.
Werner Ehrmann, Gerhard Schmiedl, Martin Seidel, Stefan Krüger, and Hartmut Schulz
Clim. Past, 12, 713–727, https://doi.org/10.5194/cp-12-713-2016, https://doi.org/10.5194/cp-12-713-2016, 2016
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
Related subject area
Paleobiogeoscience: Climate Connection
The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin
Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises
Investigating controls of shell growth features in a foundation bivalve species: seasonal trends and decadal changes in the California mussel
Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr
What was the source of the atmospheric CO2 increase during the Holocene?
Climate and marine biogeochemistry during the Holocene from transient model simulations
Plant functional diversity affects climate–vegetation interaction
High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea
Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons
Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology
Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)
An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations
Evidence from "Köppen signatures" of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling
Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation
Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions
An analysis of the contrasting fates of locust swarms on the plains of North America and East Asia
Process based model sheds light on climate sensitivity of Mediterranean tree-ring width
A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Kunio Kaiho
Biogeosciences, 19, 3369–3380, https://doi.org/10.5194/bg-19-3369-2022, https://doi.org/10.5194/bg-19-3369-2022, 2022
Short summary
Short summary
I found a good correlation between the mass extinction magnitudes of animals and surface temperature anomalies. The relation is good regardless of the difference between warming and cooling. Marine animals are more likely than tetrapods to become extinct under a habitat temperature anomaly. The extinction magnitudes are marked by abrupt global surface temperature anomalies and coincidental environmental changes associated with abrupt high-energy input by volcanism and impact.
Veronica Padilla Vriesman, Sandra J. Carlson, and Tessa M. Hill
Biogeosciences, 19, 329–346, https://doi.org/10.5194/bg-19-329-2022, https://doi.org/10.5194/bg-19-329-2022, 2022
Short summary
Short summary
The shell of the California mussel contains alternating dark and light calcium carbonate increments that record whether the shell was growing normally under optimal conditions (light) or slowly under sub-optimal conditions (dark). However, the timing and specific environmental controls of growth band formation have not been tested. We investigated these controls and found links between stable seawater temperatures and light bands and highly variable or extreme temperatures and dark bands.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
T. Denk, G. W. Grimm, F. Grímsson, and R. Zetter
Biogeosciences, 10, 7927–7942, https://doi.org/10.5194/bg-10-7927-2013, https://doi.org/10.5194/bg-10-7927-2013, 2013
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
G. Yu, X. Ke, H. D. Shen, and Y. F. Li
Biogeosciences, 10, 1441–1449, https://doi.org/10.5194/bg-10-1441-2013, https://doi.org/10.5194/bg-10-1441-2013, 2013
R. Touchan, V. V. Shishov, D. M. Meko, I. Nouiri, and A. Grachev
Biogeosciences, 9, 965–972, https://doi.org/10.5194/bg-9-965-2012, https://doi.org/10.5194/bg-9-965-2012, 2012
A. Sluijs and H. Brinkhuis
Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, https://doi.org/10.5194/bg-6-1755-2009, 2009
Cited articles
Allison, N., Finch, A. A., and EIMF: δ11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry, Geochim. Cosmochim. Ac., 79, 1970–1800, 2010.
Allison, N., Finch, A. A., Webster, J. M., and Clague, D. A.: Palaeoenvironmental records from fossil corals: The effects of submarine diagenesis on temperature and climate estimates, Geochim. Cosmochim. Ac., 71, 4693–4703, 2007.
Allmon, W. D.: Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic, Palaeogeogr. Palaeocl., 166, 9–26, 2001.
Allmon, W. D., Spizuco, M. P., and Jones, D. S.: Taphonomy and paleoenvironment of two turritellid-gastropod-rich beds, Pliocene of Florida, Lethaia, 28, 75–83, 1995.
Anagnostou, E., Sherrell, R. M., Gagnon, A., LaVigne, M., Field, M. P., and McDonough, W. F.: Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba ∕ Ca, and U ∕ Ca in the deep-sea coral Desmophyllum dianthus, Geochim. Cosmochim. Ac., 75, 2529–2543, 2011.
Baker, P. A. and Weber, J. N.: Coral growth rate: Variation with depth, Earth Planet. Sc. Lett., 27, 57–61, 1975.
Barker, C. E.: Fluid inclusions in the Pleistocene Miami Limestone, southeastern Florida: potentially misleading evidence of vadose diagenesis, Geological Society of America, Abstracts with Programs, 20, A119, 1986.
Barker, S. and Elderfield, H.: Foraminiferal Calcification Response to Glacial-Interglacial Changes in Atmospheric CO2, Science, 297, 833–836, 2002.
Bathurst, R. G. C.: Carbonate Sediments and their Diagenesis, Elsevier Science Publ. Co., New York, 1975.
Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., and de Vargas, C.: Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, 476, 80–83, 2011.
Bessat, F. and Buigues, D.: Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmoshere variability from south central Pacific, Palaeogeogr. Palaeocl., 175, 381–392, 2001.
Böcker, A.: Interannual and seasonal climate variability recorded by reef corals, Plio/Pleistocene (Florida) and Mio/Pliocene (Dominican Republic), Dissertation, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Leipzig, 2014.
Brachert, T. C., Reuter, M., Felis, T., Kroeger, K. F., Lohmann, G., Micheels, A., and Fassoulas, C.: Porites corals from Crete (Greece) open a window into Late Miocene (10 Ma) seasonal and interannual climate variability, Earth Planet. Sc. Lett., 245, 81–94, 2006a.
Brachert, T. C., Reuter, M., Kroeger, K. F., and Lough, J.: Coral growth bands: A new and easy to use paleothermometer in paleoenvironment analysis and paleoceanography (late Miocene, Greece), Paleoceanography 21, PA4217, https://doi.org/10.1029/2006PA001288, 2006b.
Brachert, T. C., Reuter, M., Krüger, S., Böcker, A., Lohmann, H., Mertz-Kraus, R., and Fassoulas, C.: Density banding in corals: barcodes of past and current climate change, Coral Reefs, 32, 1013–1023, 2013.
Brachert, T. C., Reuter, M., Krüger, S., Kirkerowicz, J., and Klaus, J. S.: Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA), Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, 2016.
Brachert, T. C., Reuter, M., Krüger, S., Lohmann, H., Petuch, E. J., and Klaus, J. S.: A 4.2 Million years record of interglacial paleoclimate from sclerochronological data of Florida carbonate platform (Early Pliocene to recent), Global Planet. Change, 120, 54–64, 2014.
Budd, A. F., Fukami, H., Smith, N. D., and Knowlton, N.: Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia), Zool. J. Linn. Soc.-Lond., 166, 465–529, 2012.
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M., and McCorkle, D. C.: Ocean warming slows coral growth in the central Red Sea, Science, 329, 322–325, 2010.
Carricart-Ganivet, J. P.: Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis, J. Exp. Mar. Biol. Ecol., 302, 249–260, 2004.
Carricart-Ganivet, J. P., Beltrán-Torres, A. U., Merino, M., and Ruiz-Zárate, M. A.: Skeletal extension, density and calcification rate of the reef building coral Montastraea annularis (Ellis and Solander) in the Mexican Caribbean, B. Mar. Sci., 66, 215–224, 2000.
Carricart-Ganivet, J. P., Cabanillas-Terán, N., Cruz-Ortega, I., and Blanchon, P.: Sensitivity of calcification to thermal stress varies among genera of massive reef-building vorals, PLoS ONE, 7, 1–8, 2012.
Carricart-Ganivet, J. P. and Merino, M.: Growth responses of the reef-building coral Montastraea annularis along a gradient of continental influence in the southern Gulf of Mexico, B. Mar. Sci., 68, 133–146, 2001.
Chollett, I., Mumby, P. J., and Cortes, J.: Upwelling areas do not guarantee refuge for coral reefs in a warming world, Mar. Ecol.-Prog. Ser., 416, 47–56, 2010.
Cohen, A. L. and Holcomb, M.: Why corals care about ocean acidification. Uncovering the mechanism, Oceanography, 22, 118–127, 2009.
Constantz, B. R.: The primary surface area of corals and variations in their susceptibility to diagenesis, in: Reef Diagenesis, edited by: Schroeder, J. H. and Purser, B. H., Springer-Verlag, New York, 1986.
Cooper, T. F., De'Ath, G., Fabricius, K. E., and Lough, J. M.: Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef, Glob. Change Biol., 14, 529–538, 2008.
D'Olivo, J. P., McCulloch, M. T., Eggins, S. M., and Trotter, J.: Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs, Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, 2015.
De'ath, G., Fabricius, K., and Lough, J.: Yes – Coral calcification rates have decreased in the last twenty-five years!, Mar. Geol., 346, 400–402, 2013.
De'ath, G., Lough, J. M., and Fabricius, K. E.: Declining Coral Calcification on the Great Barrier Reef, Science, 323, 116–119, 2009.
Denniston, R. F., Asmeron, Y., Polyak, V. Y., McNeill, D., Klaus, J. S., Cole, P., and Budd, A. F.: Caribbean chronostratigraphy constrained with U-Pb and 87Sr/86Sr analysis of a Miocene coral, Geology, 36, 151–153, 2008a.
Denniston, R. F., Penn, S. C., and Budd, A. F.: Constraints on Late Miocene shallow marine seasonality for the Central Caribbean using oxygen isotopes and Sr ∕ Ca ratios in a fossil coral, in: Evolutionary stasis and change in the Dominican Republic Neogene, edited by: Nehm, R. H. and Budd, A. F., Topics in Geobiology, 30, Springer Science and business Media B.V., Heidelberg, 2008b.
Dodge, R. E. and Brass, G. W.: Skeleton extension, density and calcification of the reef coral Montastrea annularis: St. Croix, U.S. Virgin Islands, B. Mar. Sci., 34, 288–307, 1984.
Dowsett, H. J. and Cronin, T. M.: High eustatic sea level during the middle Pliocene: Evidence from the southeastern US Atlantic Coastal Plain, Geology, 18, 435–438, 1990.
Dullo, W.-C.: Progressive diagenetic sequence of aragonite structures: Pleistocene coral reefs and their modern counterparts on the eastern Red Sea coast, Saudi Arabia, Palaeontographica Americana, 54, 254–160, 1984.
Dustan, P.: Growth and form in the reef-building coral Montastrea annularis, Mar. Biol., 33, 101–107, 1975.
Elizalde-Rendon, E. M., Horta-Puga, G., Gonzalez-Diaz, P., and Carricart-Ganivet, J. P.: Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic, Coral Reefs, 29, 607–614, 2010.
Emslie, S. D. and Morgan, G. S.: A Catastrophic Death Assemblage and Paleoclimatic Implications of Pliocene Seabirds of Florida, Science, 264, 684–685, 1994.
Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De/'ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.: Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations, Nature Climate Change, 1, 165–169, 2011.
Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., and Ravelo, A. C.: Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43–49, 2013.
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S. J., Scholz, D., Pätzold, J., Al-Rousan, S. A., and Al-Moghrabi, S. M.: Increased seasonality in Middle East temperatures during the last interglacial period, Nature, 429, 164–168, 2004.
Felis, T. and Pätzold, J.: Climate reconstructions from annually banded corals, in: Global environmental change in the ocean and on land, edited by: Shiyomi, M., Kawahata, H., Koizumi, H., Tsuda, A., and Awaya, Y., Terrapub, Tokyo, 2004.
Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S., and Jaubert, J.: Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata, Coral Reefs, 19, 103–113, 2000.
Flügel, E.: Microfacies analysis of carbonate rocks. Analysis, interpretation and application, Springer Verlag, Heidelberg, 2004.
Furnas, J.: Upwelling and coral reefs, in: Encyclopedia of modern coral reefs – structure, form and process, edited by: Hopley, D., Encyclopedia of earth sciences series, Springer, Dordrecht, 2011.
Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier, R. W.: Effect of calcium carbonate saturation of seawater on coral calcification, Global Planet. Change, 18, 37–46, 1998.
Ginsburg, R. N. and Shinn, E. A.: Distribution of the reef-building community in Florida and the Bahamas, Am. Assoc. Petr. Geol. B., 48, 527, 1964.
Gischler, E., Hudson, J., and Storz, D.: Growth of Pleistocene massive corals in south Florida: low skeletal extension-rates and possible ENSO, decadal, and multi-decadal cyclicities, Coral Reefs, 28, 823–830, 2009.
Gladfelter, E. H., Monahan, R. K., and Gladfelter, W. B.: Growth rates of five reef-building corals in the northeastern Caribbean, B. Mar. Sci., 28, 728–734, 1978.
Goodkin, N. F., Switzer, A. D., McCorry, D., DeVantier, L., D. True, J. D., Hughen, K. A., Angeline, N., and Yang, T. T.: Coral communities of Hong Kong: long-lived corals in a marginal reef environment, Mar. Ecol.-Prog. Ser., 426, 185–196, 2011.
Goreau, T. J. and Macfarlane, A. H.: Reduced growth rate of Montastrea annularis following the 1987–1988 coralbleaching event, Coral Reefs, 8, 211–215, 1990.
Gothmann, A. M., Stolarski, J., Adkins, J. F., Schoene, B., Dennis, K. J., Schrag, D. P., Mazur, M., and Bender, M. L.: Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic, Geochim. Cosmochim. Ac., 160, 188–208, 2015.
Graus, R. R. and Macintyre, I. G.: Variations in growth forms of the reef coral Montastrea annularis (Ellis & Sollander): a quantitative evaluation of growth response to light distribution using computer simulation, in: The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize, I, Structure and Communities, edited by: Rützler, K. and Macintyre, I. G., Smithsonian Contributions to the Marine Sciences No. 12, Washington, D.C., 1982.
Griffiths, N., Müller, W., Johnson, K. G., and Aguilera, O. A.: Evaluation of the effect of diagenetic cements on element/Ca ratios in aragonitic Early Miocene ( ∼ 16 Ma) Caribbean corals: Implications for “deep-time” palaeoenvironmental reconstructions, Palaeogeogr. Palaeocl., 369, 185–200, 2013.
Grizzle, R. E., Bricelj, V. M., and Shumway, S. E.: Physiological ecology of Mercenaria mercenaria, in: The biology of the hard clam, ediuted by: Kraeuter, J. N. and Castagna, M., Developments in aquaculture and fisheries science, 31, Elsevier, Amsterdam, 2001.
Hallock, P. and Schlager, W.: Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, 1, 389–398, 1986.
Helmle, K. P., Dodge, R. E., Swart, P. K., Gledhill, D. K., and Eakin, C. M.: Growth rates of Florida corals from 1937 to 1996 and their response to climate change, Nat. Commun., 2, 6, https://doi.org/10.1038/ncomms1222, 2011.
Helmle, K. P., Kohler, K. E., and Dodge, R. E.: The coral X-radiograph densitometry system: CoralXDS, Nova Southeastern University, Fort-Lauderdale-Davie, 2002.
Highsmith, R. C.: Coral growth rates and environmental control of density banding, J. Exp. Mar. Biol. Ecol., 37, 105–125, 1979.
Highsmith, R. C., Lueptow, R. L., and Schonberg, S. C.: Growth and bioerosion of three massive corals on the Belize barrier reef, Mar. Ecol.-Prog. Ser., 13, 261–271, 1983.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Derse Crook, E., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.: High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison, PLoS ONE, 6, https://doi.org/10.1371/journal.pone.0028983, 2011.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Slujis, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto, T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.: The geological record of ocean acidification, Science, 335, 1058–1063, 2012.
Hudson, J. H., Powell, G. V. N., Robblee, M. B., and Smith III, T. J.: A 107-year-old coral from Florida Bay: barometer of natural and man-induced catastrophies?, B. Mar. Sci., 44, 283–291, 1989.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Johnson, K. G. and Pérez, M. E.: Skeletal extension rates of Cenozoic Caribbean reef corals, Palaios, 21, 262–271, 2006.
Jones, D. S. and Allmon, W. D.: Records of upwelling, seasonality and growth in stable-isotope profiles of Pliocene mollusk shells from Florida, Lethaia, 28, 61–74, 1995.
Kiessling, W., Simpson, C., Beck, B., Mewis, H., and Pandolfi, J. M.: Equatorial decline of reef corals during the last Pleistocene interglacial, P. Natl. Acad. Sci. USA, 109, 21378–21383, 2012.
Klein, R., Pätzold, J., Wefer, G., and Loya, Y.: Depth-related timing of density band formation in Porites spp. corals from the Red Sea inferred from X-ray chronology and stable isotope composition, Mar. Ecol.-Prog. Ser., 97, 99–104, 1993.
Knutson, D. W., Buddemeier, R. W., and Smith, S. V.: Coral chronometers: seasonal growth bands in reef corals, Science, 177, 270–272, 1972.
Kuffner, I. B., Hickey, T. D., and Morrison, J. M.: Calcification rate of the massive coral Siderastrea sidera and crustose coralline algae along the Florida Keys (USA) outer-reef tract, Coral Reefs, 32, 987–997, 2013.
Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., and Goddard, J.: Effect of calcium carbonate saturation on the calcification rate of an experimental coral reef, Global Biogeochem. Cy., 14, 639–654, 2000.
Leder, J. J., Swart, P. K., Szmant, A., and Dodge, R. E.: The origin of variations in the isotopic record of scleractinian corals: 1. Oxygen, Geochim. Cosmochim. Ac., 60, 2857–2870, 1996.
Lidz, B. H.: Florida Keys, in: Encyclopedia of modern coral reefs – structure, form and process, edited by: Hopley, D., Springer, Dordrecht, 2011.
Lloyd, R. M.: A palaeoecological interpretation of the Caloosahatchee Formation, using stable isotope methods, J. Geol., 77, 1–25, 1969.
Logan, A. and Tomascik, T.: Extension growth rates in two coral species from high-latitude reefs of Bermuda, Coral Reefs, 10, 155–160, 1991.
Lough, J. M.: Coral calcification from skeletal records revisited, Mar. Ecol.-Prog. Ser., 373, 257–264, 2008.
Lough, J. M. and Barnes, D. J.: Environmental controls on growth of the massive coral Porites, J. Exp. Mar. Biol. Ecol., 245, 225–243, 2000.
Lough, J. M. and Cooper, T. F.: New insights from coral growth band studies in an era of rapid environmental change, Earth-Sci. Rev., 108, 170–184, 2011.
Macintyre, I. G. and Pilkey, O. H.: Tropical Reef Corals: Tolerance of Low Temperatures on the North Carolina shelf, Science, 166, 374–375, 1969.
Mallela, J. and Perry, C. T.: Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica, Coral Reefs, 26, 129–145, 2007.
Manzello, D. P., Enochs, I. C., Bruckner, A., Renaud, P. G., Kolodziej, G., Budd, D. A., Carlton, R., and Glynn, P. W.: Galapagos coral reef persistence after ENSO warming across an acidification gradient, Geophys. Res. Lett., 41, 9001–9008, 2014.
Manzello, D. P., Enochs, I. C., Kolodziej, G., and Carlton, R.: Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida Keys: The importance of thermal stress and inimical waters, J. Exp. Mar. Biol. Ecol., 471, 198–207, 2015a.
Manzello, D. P., Enochs, I. C., Kolodziej, G., and Carlton, R.: Recent decade of growth and calcification of Orbicella falveolata in the Florida Keys: an inshore-offshore comparison, Mar. Ecol.-Prog. Ser., 521, 81–89, 2015b.
McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J., and Barnes, D.: Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement, Nature, 421, 727–730, 2003.
McGregor, H. V. and Gagan, M. K.: Diagenesis and geochemistry of Porites corals from Papua New Guinea: Implications for paleoclimate reconstruction, Geochim. Cosmochim. Ac., 67, 2147–2156, 2003.
Meeder, J. F.: A field guide with road log to “The Pliocene fossil reef of southwest Florida”, Miami, 19, 1979.
Mertz-Kraus, R.: Mediterranean-type climate in the south Aegean (Eastern Mediterranean) during the Late Miocene: Evidence from isotope and element proxies, Dr. rer. nat. Dissertation, Fachbereich Chemie, Pharmazie und Geowissenschaften, Universität Mainz, Mainz, 129 pp., 2009.
Mertz-Kraus, R., Brachert, T. C., Jochum, K. P., Reuter, M., and Stoll, B.: LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma, Palaeogeogr. Palaeocl., 273, 25–40, 2009a.
Mertz-Kraus, R., Brachert, T. C., and Reuter, M.: Tarbellastraea (Scleractinia): A new stable isotope archive for Late Miocene paleoenvironments in the Mediterranean, Palaeogeogr. Palaeocl., 257, 294–307, 2008.
Mertz-Kraus, R., Brachert, T. C., Reuter, M., Galer, S. J. G., Fassoulas, C., and Iliopoulos, G.: Late Miocene sea surface salinity variability in the Eastern Mediterranean inferred from coral aragonite δ18O (Crete, Greece), Chem. Geol., 262, 202–216, 2009b.
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., and Sosdian, S.: High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation, Geology, 40, 407–410, https://doi.org/10.1130/G32869.1, 2012.
Nothdurft, L. D. and Webb, G. E.: Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives, Facies, 55, 161–201, 2009.
O'Brien, C. L., Foster, G. L., Martinez-Boti, M. A., Abell, R., Rae, J. W. B., and Pancost, R. D.: High sea surface temperatures in tropical warm pools during the Pliocene, Nat. Geosci., 7, 606–611, 2014.
Okazaki, R. R., Swart, P. K., and Langdon, C.: Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification, Coral Reefs, 32, 671–683, https://doi.org/10.1007/s00338-013-1015-3, 2013.
Perrin, C.: Diagenèse précoce des biocristaux carbonatés : transformations isominérales de l'aragonite corallienne, Bulletin de la Société Géologique de France, 175, 95–106, 2004.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Petuch, E. J. and Roberts, C. E.: The geology of the Everglades and adjacent areas, CRC Press, New York and Boca Raton, 2007.
Pratchett, M. S., Anderson, K. D., Hoogenboom, M. O., Widman, E., Baird, A. H., Pandolfi, J. M., Edmunds, P. J., and Lough, J. M.: Spatia, temporal and taxonomic variation in coral growth – implications for the structure and function of coral reef ecosystems, Oceanogr. Mar. Biol., 53, 215–295, 2015.
Reuter, M., Brachert, T. C., and Kroeger, K. F.: Diagenesis of growth bands in fossil scleractinian corals: Identification and modes of preservation, Facies, 51, 155–168, 2005.
Riding, R., Liang, L., and Braga, J.-C.: Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs, Geobiology, 12, 387–405, https://doi.org/10.1111/gbi.12097, 2014.
Riegl, B. and Piller, W. E.: Possible refugia for reefs in times of environmental stress, Int. J. Earth Sci., 92, 520–531, 2003.
Roulier, L. M. and Quinn, T. M.: Seasonal- to decadal-scale climatic variability in southwest Florida during the middle Pliocene: Inferences from a coralline stable isotope record, Paleoceanography, 10, 429–443, 1995.
Schroeder, J. H. and Purser, B. H. (Eds.): Reef Diagenesis, Springer-Verlag, New York, 1986.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sc. Lett., 292, 201–211, 2010.
Shen, G. T. and Dunbar, R. B.: Environmental controls on uranium in reef corals, Geochim. Cosmochim. Ac., 59, 2009–2024, 1995.
Shinn, E. A.: Coral growth-rate, an environmental indicator, J. Paleontol., 40, 233–240, 1966.
Sinclair, D. J., Kinsley, L. P. J., and McCulloch, M. T.: High resolution analysis of trace elements in corals by laser ablation ICP-MS, Geochim. Cosmochim. Ac., 62, 1889–1901, 1998.
Swart, P. K.: Carbon and oxygen isotope fractionation in scleractinian corals: A review, Earth-Sci. Rev., 19, 51–80, 1983.
Swart, P. K.: The strontium, magnesium and sodium composition of recent scleractinian coral skeletons as standards for palaeoenvironmental analysis, Palaeogeogr. Palaeocl., 34, 115–136, 1981.
Swart, P. K., Greer, L., Rosenheim, B. E., Moses, C. S., Waite, A. J., Winter, A., Dodge, R. E., and Helmle, K.: The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans, Geophys. Res. Lett., 37, L05604, https://doi.org/10.1029/2009gl041397, 2010.
Swart, P. K., Healy, G., Greer, L., Lutz, M., Saied, A., Anderegg, D., Dodge, R. E., and Rudnick, D.: The use of proxy chemical records in coral skeletons to ascertain past environmental conditions in Florida Bay, Estuarines, 22, 384–397, 1999.
Swart, P. K., Healy, G. F., Dodge, R. E., Kramer, P., Hudson, J. H., Halley, R. B., and Robblee, M. B.: The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence, Palaeogeogr. Palaeocl., 123, 219–237, 1996.
Tanzil, J. T. I., Brown, B. E., Tudhope, A. W., and Dunne, R. P.: Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005, Coral Reefs, 28, 519–528, https://doi.org/10.1007/s00338-008-0457-5, 2009.
Tao, K. and Grossman, E. L.: Origin of high productivity in the Pliocene of the Florida platform: Evidence from stable isotopes, Palaios, 25, 796–806, 2010.
Townsend, C. R., Begon, M., and Harper, J. L.: Essentials of Ecology, Blackwell, Oxford, 2008.
Worum, F. P., Carricart-Ganivet, J. P., Besnon, L., and Golicher, D.: Simulation and observation of annual density banding in skeletons of Montastrea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming, Limnol. Oceanogr., 52, 2317–2323, 2007.
Short summary
We have analysed the rate of calcification of fossil reef corals. These measurements are important, because the rate of formation of the skeleton depends on the physical environment in which the corals lived. The rates of skeletal calcification of the fossils were approximately 50 % lower than they are in extant reef corals. This is a likely effect of high water temperatures and/or low carbonate saturation of the water – factors that will also affect coral growth by future global warming.
We have analysed the rate of calcification of fossil reef corals. These measurements are...
Altmetrics
Final-revised paper
Preprint