Research article 03 Feb 2016
Research article | 03 Feb 2016
Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products
M. Marshall et al.
Related authors
M. Belgiu, Y. Zhou, M. Marshall, and A. Stein
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 947–951, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-947-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-947-2020, 2020
Michael Marshall, Michael Norton-Griffiths, Harvey Herr, Richard Lamprey, Justin Sheffield, Tor Vagen, and Joseph Okotto-Okotto
Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, https://doi.org/10.5194/esd-8-55-2017, 2017
Short summary
Short summary
The transition of land from one cover type to another can adversely affect the Earth system. A growing body of research aims to map these transitions in space and time to better understand the impacts. Here we develop a statistical model that is parameterized by socio-ecological geospatial data and extensive aerial/ground surveys to visualize and interpret these transitions on an annual basis for 30 years in Kenya. Future work will use this method to project land suitability across Africa.
M. Belgiu, Y. Zhou, M. Marshall, and A. Stein
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 947–951, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-947-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-947-2020, 2020
Michael Marshall, Michael Norton-Griffiths, Harvey Herr, Richard Lamprey, Justin Sheffield, Tor Vagen, and Joseph Okotto-Okotto
Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, https://doi.org/10.5194/esd-8-55-2017, 2017
Short summary
Short summary
The transition of land from one cover type to another can adversely affect the Earth system. A growing body of research aims to map these transitions in space and time to better understand the impacts. Here we develop a statistical model that is parameterized by socio-ecological geospatial data and extensive aerial/ground surveys to visualize and interpret these transitions on an annual basis for 30 years in Kenya. Future work will use this method to project land suitability across Africa.
Related subject area
Earth System Science/Response to Global Change: Evolution of System Earth
Technical note: Low meteorological influence found in 2019 Amazonia fires
Understanding tropical forest abiotic response to hurricanes using experimental manipulations, field observations, and satellite data
Towards a global understanding of vegetation–climate dynamics at multiple timescales
Evaluating and improving the Community Land Model's sensitivity to land cover
The extant shore platform stromatolite (SPS) facies association: a glimpse into the Archean?
Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil
Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland
Seasonal variation in grass water content estimated from proximal sensing and MODIS time series in a Mediterranean Fluxnet site
A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions
Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region
High-latitude cooling associated with landscape changes from North American boreal forest fires
Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates
Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans
Douglas I. Kelley, Chantelle Burton, Chris Huntingford, Megan A. J. Brown, Rhys Whitley, and Ning Dong
Biogeosciences, 18, 787–804, https://doi.org/10.5194/bg-18-787-2021, https://doi.org/10.5194/bg-18-787-2021, 2021
Short summary
Short summary
Initial evidence suggests human ignitions or landscape changes caused most Amazon fires during August 2019. However, confirmation is needed that meteorological conditions did not have a substantial role. Assessing the influence of historical weather on burning in an uncertainty framework, we find that 2019 meteorological conditions alone should have resulted in much less fire than observed. We conclude socio-economic factors likely had a strong role in the high recorded 2019 fire activity.
Ashley E. Van Beusekom, Grizelle González, Sarah Stankavich, Jess K. Zimmerman, and Alonso Ramírez
Biogeosciences, 17, 3149–3163, https://doi.org/10.5194/bg-17-3149-2020, https://doi.org/10.5194/bg-17-3149-2020, 2020
Short summary
Short summary
This study looks at forest abiotic responses to canopy openness and debris deposition that follow a hurricane. We find that recovery to full canopy may take over half a decade and that recovery of humidity, soil moisture, and leaf saturation under the canopy is not monotonic and may temporarily look recovered before the response is over. Furthermore, we find that satellite data show a quicker recovery than field data, necessitating caution when looking at responses to hurricanes with satellites.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018, https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Short summary
Deforestation not only releases carbon dioxide to the atmosphere but also affects local climatic conditions by altering energy fluxes at the land surface and thereby the local temperature. Here, we evaluate the local impact of deforestation in a widely used land surface model. We find that the model reproduces the daytime warming effect of deforestation well. On the other hand, the warmer temperatures observed during night in forests are not present in this model.
Alan Smith, Andrew Cooper, Saumitra Misra, Vishal Bharuth, Lisa Guastella, and Riaan Botes
Biogeosciences, 15, 2189–2203, https://doi.org/10.5194/bg-15-2189-2018, https://doi.org/10.5194/bg-15-2189-2018, 2018
Short summary
Short summary
Growing shore-platform stromatolites are increasingly found on modern rocky coasts. Stromatolites are very similar to Archean and Proterozoic stromatolites. A study of modern stromatolites may shed light on the conditions that existed on the early Earth and other planets and possibly provide information on how life began.
Luciana M. Sanders, Kathryn Taffs, Debra Stokes, Christian J. Sanders, Alex Enrich-Prast, Leonardo Amora-Nogueira, and Humberto Marotta
Biogeosciences, 15, 447–455, https://doi.org/10.5194/bg-15-447-2018, https://doi.org/10.5194/bg-15-447-2018, 2018
Short summary
Short summary
The Amazon rainforest produce large quantities of carbon, a portion of which is deposited in floodplain lakes. This research shows a potentially important spatial dependence of the carbon deposition in the Amazon lacustrine sediments in relation to deforestation rates in the catchment. The findings presented here highlight the effects of abrupt and temporary events in which some of the biomass released by the deforestation reach the depositional environments in the Amazon floodplains.
Etienne Godin, Daniel Fortier, and Esther Lévesque
Biogeosciences, 13, 1439–1452, https://doi.org/10.5194/bg-13-1439-2016, https://doi.org/10.5194/bg-13-1439-2016, 2016
Short summary
Short summary
Bowl-shaped ice-wedge polygons in permafrost regions can retain snowmelt water and moisture in their center. On Bylot Island (NU, CA), a rapidly developing thermal erosion gully eroded the polygons' ridges, impacting the polygon centers' ground moisture and temperature, plant cover and species. An intact polygon was homogeneous in its center for the aforementioned elements, whereas eroded polygons had a varying response following the breach, with heterogeneity as their new equilibrium state.
G. Mendiguren, M. Pilar Martín, H. Nieto, J. Pacheco-Labrador, and S. Jurdao
Biogeosciences, 12, 5523–5535, https://doi.org/10.5194/bg-12-5523-2015, https://doi.org/10.5194/bg-12-5523-2015, 2015
S. Chen, J. Beardall, and K. Gao
Biogeosciences, 11, 4829–4837, https://doi.org/10.5194/bg-11-4829-2014, https://doi.org/10.5194/bg-11-4829-2014, 2014
F. Günther, P. P. Overduin, A. V. Sandakov, G. Grosse, and M. N. Grigoriev
Biogeosciences, 10, 4297–4318, https://doi.org/10.5194/bg-10-4297-2013, https://doi.org/10.5194/bg-10-4297-2013, 2013
B. M. Rogers, J. T. Randerson, and G. B. Bonan
Biogeosciences, 10, 699–718, https://doi.org/10.5194/bg-10-699-2013, https://doi.org/10.5194/bg-10-699-2013, 2013
Y. Xia and X. Yan
Biogeosciences, 8, 3159–3168, https://doi.org/10.5194/bg-8-3159-2011, https://doi.org/10.5194/bg-8-3159-2011, 2011
R. Sulpizio, G. Zanchetta, M. D'Orazio, H. Vogel, and B. Wagner
Biogeosciences, 7, 3273–3288, https://doi.org/10.5194/bg-7-3273-2010, https://doi.org/10.5194/bg-7-3273-2010, 2010
Cited articles
Asrar, G., Myneni, R. B., and Choudhury, B. J.: Spatial heterogeneity in
vegetation canopies and remote sensing of absorbed photosynthetically active
radiation: A modeling study, Remote Sens. Environ., 41, 85–103, 1992.
Baret, F., Weiss, M., Allard, D., Garrigues, S., Leroy, M., Jeanjean, H.,
Myneni, R., Privette, J., Morisette, J., Bohbot, H., Bosseno, R., Dedieu,
G., Di Bella, C., Duchemin, B., Espana, M., Gond, V., Gu, X. F., Guyon, D.,
Lelong, C., Maisongrande, P., Mougin, E., Nilson, T., Veroustraete, F., and
Vintilla, R.: VALERI: a network of sites and a methodology for the
validation of medium spatial resolution land satellite products, Institut
national de la recherche agronomique, Avignon, France, 2014.
Barichivich, J., Briffa, K. R., Myneni, R. B., Osborn, T. J., Melvin, T. M.,
Ciais, P., Piao, S., and Tucker, C.: Large-scale variations in the vegetation
growing season and annual cycle of atmospheric CO2 at high northern
latitudes from 1950 to 2011, Glob. Change Biol., 19, 3167–3183, 2013.
Beck, H. E., McVicar, T. R., van Dijk, A. I. J. M., Schellekens, J., de Jeu,
R. A. M., and Bruijnzeel, L. A.: Global evaluation of four AVHRR–NDVI data
sets: Intercomparison and assessment against Landsat imagery, Remote Sens.
Environ., 115, 2547–2563, 2011.
Beer, A.: Bestimmung der Absorption des rothen Lichts in farbigen
Flüssigkeiten, Ann. Phys. U. Chem., 1852.
Brown, M. E., de Beurs, K. M., and Marshall, M.: Global phenological response
to climate change in crop areas using satellite remote sensing of
vegetation, humidity and temperature over 26 years, Remote Sens. Environ.,
126, 174–183, 2012.
De Beurs, K. M. and Henebry, G. M.: A statistical framework for the analysis
of long image time series, Int. J. Remote Sens., 26, 1551–1573, 2005.
De Jong, R., Verbesselt, J., Schaepman, M. E., and de Bruin, S.: Trend
changes in global greening and browning: contribution of short-term trends
to longer-term change, Glob. Change Biol., 18, 642–655, 2012.
Didan, K.: Multi-Satellite Earth Science Data Record for Studying Global
Vegetation Trends and changes, The University of Arizona, Tucson, AZ, 2014.
Eastman, R., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai,
Y., Machado, E. A., and Crema, S. C.: Seasonal trend analysis of image time
series, Int. J. Remote Sens., 30, 2721–2726, 2009.
El Saleous, N. Z., Vermote, E. F., Justice, C. O., Townshend, J. R. G.,
Tucker, C. J., and Goward, S. N.: Improvements in the global biospheric
record from the Advanced Very High Resolution Radiometer (AVHRR), Int. J.
Remote Sens., 21, 1251–1277, 2000.
Fensholt, R., Sandholt, I., and Stisen, S.: Evaluating MODIS, MERIS, and
vegetation indices using in situ measurements in a semiarid environment,
IEEE Trans. Geosci. Remote Sens., 44, 1774–1786, 2006.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the
land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919,
2008.
Friedl, M. A., Davis, F. W., Michaelsen, J., and Moritz, M. A.: Scaling and
uncertainty in the relationship between the NDVI and land surface
biophysical variables: An analysis using a scene simulation model and data
from FIFE, Remote Sens. Environ., 5, 233–246, 1995.
Funk, C. C. and Brown, M. E.: Intra-seasonal NDVI change projections in
semi-arid Africa, Remote Sens. Environ., 101, 249–256, 2006.
Gao, X., Huete, A. R., Ni, W., and Miura, T.: Optical–Biophysical
Relationships of Vegetation Spectra without Background Contamination, Remote
Sens. Environ., 74, 609–620, 2000.
Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A. T., and Ndiaye, O.: A
unifying view of climate change in the Sahel linking intra-seasonal,
interannual and longer time scales, Environ. Res. Lett., 8, 024010–024018, https://doi.org/10.1088/1748-9326/8/2/024010, 2013.
Gilbert, R. O.: Statistical Methods for Environmental Pollution Monitoring,
John Wiley & Sons, New York, NY, 1987.
Glenn, E. P., Huete, A. R., Nagler, P. L., and Nelson, S. G.: Relationship
Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant
Physiological Processes: What Vegetation Indices Can and Cannot Tell Us
About the Landscape, Sensors, 8, 2136–2160, 2008.
Guay, K. C., Beck, P. S. A., Berner, L. T., Goetz, S. J., Baccini, A., and
Buermann, W.: Vegetation productivity patterns at high northern latitudes: a
multi-sensor satellite data assessment, Glob. Change Biol., 20,
3147–3158, 2014.
Gutman, G. and Ignatov, A.: The derivation of the green vegetation fraction
from NOAA/AVHRR data for use in numerical weather prediction models, Int. J.
Remote Sens., 19, 1533–1543, 1998.
Hall, F., Masek, J. G., and Collatz, G. J.: Evaluation of ISLSCP Initiative
II FASIR and GIMMS NDVI products and implications for carbon cycle science,
J. Geophys. Res.-Atmos., 111, D22S08, https://doi.org/10.1029/2006JD007438, 2006.
Hall, F. G., Huemmrich, K. F., Goetz, S. J., Sellers, P. J., and Nickeson, J.
E.: Satellite remote sensing of surface energy balance: Success, failures,
and unresolved issues in FIFE, J. Geophys. Res.-Atmos., 97,
19061–19089, 1992.
Hansen, M. C., Stehman, S. V., and Potapov, P. V.: Quantification of global
gross forest cover loss, P. Natl. Acad. Sci. USA, 107, 8650–8655, 2010.
Holben, B. N.: Characteristics of maximum-value composite images from
temporal AVHRR data, Int. J. Remote Sens., 7, 1417–1434, 1986.
Huete, A.: A soil-adjusted vegetation index (SAVI), Remote Sens. Environ.,
25, 295–309, 1988.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Huete, A., Kim, H.-J., and Miura, T.: Scaling dependencies and uncertainties
in vegetation index – biophysical retrievals in heterogeneous environments,
in Geoscience and Remote Sensing Symposium, 2005, IGARSS '05, Proceedings
2005 IEEE International, 7, 5029–5032, 2005.
Huete, A., Didan, K., Leeuwen, W. van, Miura, T., and Glenn, E.: MODIS
Vegetation Indices, in: Land Remote Sensing and Global Environmental Change,
edited by: Ramachandran, B., Justice, C. O., and Abrams, M. J., 579–602,
Springer New York, 2010.
Jakubauskas, M. E., Legates, D. R., and Kastens, J. H.: Harmonic analysis of
time-series AVHRR NDVI data, Photogramm. Eng. Remote Sens., 67, 461–470,
2001.
Jiang, L., Kogan, F. N., Guo, W., Tarpley, J. D., Mitchell, K. E., Ek, M.
B., Tian, Y., Zheng, W., Zou, C.-Z., and Ramsay, B. H.: Real-time weekly
global green vegetation fraction derived from advanced very high resolution
radiometer-based NOAA operational global vegetation index (GVI) system, J. Geophys. Res.-Atmos., 115, D11114, https://doi.org/10.1111/j.1365-2486.2011.02397.x, 2010.
Jiang, Z., Huete, A. R., Didan, K., and Miura, T.: Development of a two-band
enhanced vegetation index without a blue band, Remote Sens. Environ.,
112, 3833–3845, 2008.
Kandasamy, S., Baret, F., Verger, A., Neveux, P., and Weiss, M.: A comparison of methods for smoothing and gap
filling time series of remote sensing observations – application to MODIS LAI products, Biogeosciences, 10, 4055–4071, https://doi.org/10.5194/bg-10-4055-2013,
2013.
Kang, Y., Ozdogan, M., Zipper, S. C., Roman, M. O., Walker, J., Youn Hong,
S., Marshall, M., Magliulo, V., Moreno, J., Alonso, L., Miyata, A., Kimbal,
B., and Loheide, S. P.: How Universal is the Relationship between Remotely
Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment,
Remote Sens. Environ. Press, 2015.
Karnieli, A., Bayasgalan, M., Bayarjargal, Y., Agam, N., Khudulmur, S., and
Tucker, C. J.: Comments on the use of the Vegetation Health Index over
Mongolia, Int. J. Remote Sens., 27, 2017–2024, 2006.
Marshall, M. and Thenkabail, P.: Developing in situ Non-Destructive
Estimates of Crop Biomass to Address Issues of Scale in, Remote Sens., 7,
808–835,
2015.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G.,
Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T.-K.: A Landsat surface
reflectance dataset for North America, 1990–2000, IEEE Geosci. Remote Sens.
Lett., 3, 68–72, 2006.
Mayaux, P., Pekel, J.-F., Desclée, B., Donnay, F., Lupi, A., Achard, F.,
Clerici, M., Bodart, C., Brink, A., Nasi, R., and Belward, A.: State and
evolution of the African rainforests between 1990 and 2010, Philos. Trans.
R. Soc. B, 368, 20120300, https://doi.org/10.1098/rstb.2012.0300 , 2013.
Monsi, M. and Saeki, T.: Über den Lichtfaktor in den
Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn.
J. Bot., 14, 22–52, 1953.
Moulin, S., Kergoat, L., Viovy, N., and Dedieu, G.: Global-Scale Assessment
of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements, J. Clim.,
10, 1154–1170, 1997.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global
evapotranspiration algorithm based on MODIS and global meteorology data,
Remote Sens. Environ., 111, 519–536, 2007.
Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian,
Y., Wang, Y., Song, X., Zhang, Y., Smith, G., Lotsch, A., Friedl, M.,
Morisette, J., Votava, P., Nemani, R., and Running, S.: Global products
of vegetation leaf area and fraction absorbed PAR from year one of MODIS
data, Remote Sens. Environ., 83, 214–231, 2002.
Nagol, J. R., Vermote, E. F., and Prince, S. D.: Effects of atmospheric
variation on AVHRR NDVI data, Remote Sens. Environ., 113, 392–397, 2009.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases in
Global Terrestrial Net Primary Production from 1982 to 1999, Science,
300, 1560–1563, 2003.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for
estimating soil and vegetation energy fluxes in observations of directional
radiometric surface temperature, Agric. For. Meteorol., 77, 263–293,
1995.
O'ishi, R. and Abe-Ouchi, A.: Influence of dynamic vegetation on climate
change arising from increasing CO2, Clim. Dyn., 33, 645–663, 2009.
Paruelo, J. M., Garbulsky, M. F., Guerschman, J. P., and Jobbágy, E. G.:
Two decades of Normalized Difference Vegetation Index changes in South
America: identifying the imprint of global change, Int. J. Remote Sens.,
25, 2793–2806, 2004.
Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C.,
Roy, D., Ju, J., Vermote, E., Prince, S., Nagol, J., Justice, C., Schaaf,
C., Liu, J., Privette, J., and Pinheiro, A.: Generating a long-term land data
record from the AVHRR and MODIS Instruments, in Geoscience and Remote
Sensing Symposium, 2007, IGARSS 2007, IEEE International, 1021–1025,
2007.
Peischl, S., Walker, J. P., Rüdiger, C., Ye, N., Kerr, Y. H., Kim, E., Bandara, R., and Allahmoradi, M.: The AACES
field experiments: SMOS calibration and validation across the Murrumbidgee River catchment, Hydrol. Earth Syst. Sci., 16, 1697–1708, https://doi.org/10.5194/hess-16-1697-2012, 2012.
Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981–2012 AVHRR NDVI3g
Time Series, Remote Sens., 6, 6929–6960, 2014.
Quillet, A., Peng, C., and Garneau, M.: Toward dynamic global vegetation
models for simulating vegetation–climate interactions and feedbacks: recent
developments, limitations, and future challenges, Environ. Rev., 18,
333–353, 2010.
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the
planet: 1. Geographic distribution of global agricultural lands in the year
2000, Global Biogeochem. Cy., 22, GB1003, https://doi.org/10.1029/2007GB002952, 2008.
Rao, C. R. N. and Chen, J.: Inter-satellite calibration linkages for the
visible and near-infared channels of the Advanced Very High Resolution
Radiometer on the NOAA-7, -9, and -11 spacecraft, Int. J. Remote Sens.,
16, 1931–1942, 1995.
Rao, C. R. N. and Chen, J.: Post-launch calibration of the visible and
near-infrared channels of the Advanced Very High Resolution Radiometer on
the NOAA-14 spacecraft, Int. J. Remote Sens., 17, 2743–2747, 1996.
Rocha, A. V. and Shaver, G. R.: Advantages of a two band EVI calculated from
solar and photosynthetically active radiation fluxes, Agric. For. Meteorol.,
149, 1560–1563, 2009.
Rouse, J. W.: Monitoring the vernal advancement and retrogradation (green
wave effect) of natural vegetation, available at:
http://ntrs.nasa.gov/search.jsp?R=19740022555 (last access: 6 April 2015),
1974.
Scheftic, W., Zeng, X., Broxton, P., and Brunke, M.: Intercomparison of Seven
NDVI Products over the United States and Mexico, Remote Sens., 6,
1057–1084, 2014.
Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration, Int.
J. Remote Sens., 6, 1335–1372, 1985.
Tucker, C. J.: Red and photographic infrared linear combinations for
monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Tucker, C. J., Newcomb, W. W., and Dregne, H. E.: AVHRR data sets for
determination of desert spatial extent, Int. J. Remote Sens., 15,
3547–3565, 1994.
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W.,
Mahoney, R., Vermote, E. F., and El Saleous, N.: An extended AVHRR 8-km NDVI
dataset compatible with MODIS and SPOT vegetation NDVI data, Int. J. Remote
Sens., 26, 4485–4498, 2005.
Van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., and Herrmann, S. M.:
Multi-sensor NDVI data continuity: Uncertainties and implications for
vegetation monitoring applications, Remote Sens. Environ., 100, 67–81,
2006.
Vermote, E., Saleous, N. E., Kaufman, Y. J., and Dutton, E.: Data
pre-processing: Stratospheric aerosol perturbing effect on the remote
sensing of vegetation: Correction method for the composite NDVI after the
Pinatubo eruption, Remote Sens. Rev., 15, 7–21, 1997.
Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., and
Chen, A.: Spring temperature change and its implication in the change of
vegetation growth in North America from 1982 to 2006, P. Natl. Acad. Sci. USA, 108, 1240–1245, 2011.
Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., and Moore III,
B.: Sensitivity of vegetation indices to atmospheric aerosols:
continental-scale observations in Northern Asia, Remote Sens. Environ.,
84, 385–392, 2003.
Xin, Q., Gong, P., Yu, C., Yu, L., Broich, M., Suyker, A. E., and Myneni, R.
B.: A Production Efficiency Model-Based Method for Satellite Estimates of
Corn and Soybean Yields in the Midwestern US, Remote Sens., 5,
5926–5943, 2013.
Zeng, X., Dickinson, R. E., Walker, A., Shaikh, M., DeFries, R. S., and Qi,
J.: Derivation and Evaluation of Global 1-km Fractional Vegetation Cover
Data for Land Modeling, J. Appl. Meteorol., 39, 826–839, 2000.
Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., Piao,
S., Chen, H., Vermote, E. F., Song, C., and Hwang, T.: Widespread decline of
Congo rainforest greenness in the past decade, Nature, 509, 86–90,
2014.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao,
S., Nemani, R. R., and Myneni, R. B.: Global Data Sets of Vegetation Leaf
Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation
(FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS)
Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011,
Remote Sens., 5, 927–948, 2013.
Short summary
We compared two new Earth observation based long-term global vegetation index products used in global change research (Global Inventory Modeling and Mapping Studies and Vegetation Index and Phenology Lab- VIP version 3). The two products showed a high level of consistency throughout the primary growing season and were less consistent during green-up and brown-down that impacted trends in phenology. VIP was generally higher and more variable leading to poorer correlations with in situ data
We compared two new Earth observation based long-term global vegetation index products used in...
Altmetrics
Final-revised paper
Preprint