Articles | Volume 14, issue 6
https://doi.org/10.5194/bg-14-1647-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-1647-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Philip Wallhead
NIVA, Norwegian Institute for Water Research, Bergen, Norway
John Hemmings
Wessex Environmental Associates, Salisbury, UK
now at: Met Office, Exeter, UK
Ulrike Löptien
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Iris Kriest
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Shubham Krishna
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Ben A. Ward
University of Bristol, School of Geographical Sciences, Bristol, UK
Thomas Slawig
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Kiel, Germany
Andreas Oschlies
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Viewed
Total article views: 5,973 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jun 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,868 | 1,883 | 222 | 5,973 | 119 | 142 |
- HTML: 3,868
- PDF: 1,883
- XML: 222
- Total: 5,973
- BibTeX: 119
- EndNote: 142
Total article views: 4,942 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Mar 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,360 | 1,367 | 215 | 4,942 | 115 | 135 |
- HTML: 3,360
- PDF: 1,367
- XML: 215
- Total: 4,942
- BibTeX: 115
- EndNote: 135
Total article views: 1,031 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jun 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
508 | 516 | 7 | 1,031 | 4 | 7 |
- HTML: 508
- PDF: 516
- XML: 7
- Total: 1,031
- BibTeX: 4
- EndNote: 7
Cited
50 citations as recorded by crossref.
- Using Maximum Entropy Production to Describe Microbial Biogeochemistry Over Time and Space in a Meromictic Pond J. Vallino & J. Huber 10.3389/fenvs.2018.00100
- A structure-preserving model for the dynamics of estuarine ecosystems and its application in western Patagonia fjords P. Mata Almonacid & C. Medel 10.1016/j.ecolmodel.2021.109871
- Disentangling the effects of climate change and reoligotrophication on primary production in a large lake S. Krishna et al. 10.1007/s00027-022-00910-2
- Resolving ecological feedbacks on the ocean carbon sink in Earth system models D. Armstrong McKay et al. 10.5194/esd-12-797-2021
- Suspension feeders: diversity, principles of particle separation and biomimetic potential L. Hamann & A. Blanke 10.1098/rsif.2021.0741
- Mapping manifestations of parametric uncertainty in projected pelagic oxygen concentrations back to contemporary local model fidelity U. Löptien et al. 10.1038/s41598-021-00334-2
- From Bacteria to Zooplankton: An Integrative Approach Revealing Regional Spatial Patterns During the Spring Phytoplankton Bloom in the Southern Bight of the North Sea A. Aubert et al. 10.3389/fmars.2022.863996
- The role of biota in the Southern Ocean carbon cycle P. Boyd et al. 10.1038/s43017-024-00531-3
- Multiobjective Calibration of a Global Biogeochemical Ocean Model Against Nutrients, Oxygen, and Oxygen Minimum Zones V. Sauerland et al. 10.1029/2018MS001510
- Intermediate Variable Emulation: Using Internal Processes in Simulators to Build More Informative Emulators R. Oughton et al. 10.1137/20M1370902
- Food web structure and intraguild predation affect ecosystem functioning in an established plankton model A. Prowe et al. 10.1002/lno.12039
- Bridging the gap: integrating models and observations for better ecosystem understanding M. Skogen et al. 10.3354/meps14616
- Can neural networks predict steady annual cycles of marine ecosystems? T. Slawig & M. Pfeil 10.1007/s00287-022-01491-y
- Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach M. Stukel et al. 10.5194/bg-19-3595-2022
- Investigating ecosystem connections in the shelf sea environment using complex networks I. Higgs et al. 10.5194/bg-21-731-2024
- Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration I. Kriest et al. 10.5194/bg-20-2645-2023
- Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea D. Kaufman et al. 10.5194/bg-15-73-2018
- Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design D. Ford 10.5194/bg-18-509-2021
- Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models T. Rohr et al. 10.1038/s43247-023-00871-w
- A CMA‐ES Algorithm Allowing for Random Parameters in Model Calibration V. Sauerland et al. 10.1029/2022MS003390
- Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models L. Novi et al. 10.5194/bg-21-3985-2024
- Evaluating ecosystem model complexity for the northwest North Atlantic through surrogate-based optimization A. Kuhn & K. Fennel 10.1016/j.ocemod.2019.101437
- Impacts of parameter uncertainties on deep chlorophyll maximum simulation revealed by the CNOP-P approach Y. Gao et al. 10.1007/s00343-020-0020-y
- Taxon-specific phytoplankton growth, nutrient utilization and light limitation in the oligotrophic Gulf of Mexico N. Yingling et al. 10.1093/plankt/fbab028
- Top-down and bottom-up control of phytoplankton in a mid-latitude continental shelf ecosystem S. Rodríguez-Gálvez et al. 10.1016/j.pocean.2023.103083
- Calibration of a simple and a complex model of global marine biogeochemistry I. Kriest 10.5194/bg-14-4965-2017
- Ocean biogeochemical modelling K. Fennel et al. 10.1038/s43586-022-00154-2
- Cyanobacteria blooms in the Baltic Sea: a review of models and facts B. Munkes et al. 10.5194/bg-18-2347-2021
- How uncertain and observable are marine ecosystem indicators in shelf seas? J. Skákala et al. 10.1016/j.pocean.2024.103249
- Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing K. Kvale & K. Meissner 10.5194/bg-14-4767-2017
- Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0) V. Sauerland et al. 10.5194/gmd-11-1181-2018
- Spatial variability in rates of net primary production (NPP) and onset of the spring bloom in Greenland shelf waters M. Vernet et al. 10.1016/j.pocean.2021.102655
- A global sensitivity analysis approach for marine biogeochemical modeling C. Prieur et al. 10.1016/j.ocemod.2019.101402
- Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data S. Krishna et al. 10.1016/j.ecolmodel.2019.05.016
- Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific Y. Hoshiba et al. 10.5194/os-14-371-2018
- Future digital twins: emulating a highly complex marine biogeochemical model with machine learning to predict hypoxia J. Skákala et al. 10.3389/fmars.2023.1058837
- Revealing the seasonal cycles of Arctic phytoplankton: insights from year-round chlorophyll monitoring E. Ko et al. 10.1088/1748-9326/ad1e7e
- Uncertainties in ocean biogeochemical simulations: Application of ensemble data assimilation to a one-dimensional model N. Mamnun et al. 10.3389/fmars.2022.984236
- Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration C. Chien et al. 10.5194/gmd-13-4691-2020
- Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology's “canonical” activation energies Q. Wang et al. 10.1002/lno.11105
- Recommendations for the formulation of grazing in marine biogeochemical and ecosystem models T. Rohr et al. 10.1016/j.pocean.2022.102878
- The role of microzooplankton trophic interactions in modelling a suite of mesocosm ecosystems B. Su et al. 10.1016/j.ecolmodel.2017.11.013
- A data–model synthesis to explain variability in calcification observed during a CO<sub>2</sub> perturbation mesocosm experiment S. Krishna & M. Schartau 10.5194/bg-14-1857-2017
- Advances in biorenewables-resource-waste systems and modelling M. Guo et al. 10.1016/j.ccst.2023.100142
- Ambiguous controls on simulated diazotrophs in the world oceans U. Löptien & H. Dietze 10.1038/s41598-022-22382-y
- Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design A. Mignot et al. 10.5194/bg-20-1405-2023
- Nitrogen Fixation in Mesoscale Eddies of the North Pacific Subtropical Gyre: Patterns and Mechanisms M. Dugenne et al. 10.1029/2022GB007386
- Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export D. Kaufman et al. 10.1002/2016JC012514
- A Simple Finite Difference‐Based Approximation for Biogeochemical Tangent Linear and Adjoint Models J. Mattern & C. Edwards 10.1029/2018JC014283
- Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0) I. Kriest et al. 10.5194/gmd-10-127-2017
47 citations as recorded by crossref.
- Using Maximum Entropy Production to Describe Microbial Biogeochemistry Over Time and Space in a Meromictic Pond J. Vallino & J. Huber 10.3389/fenvs.2018.00100
- A structure-preserving model for the dynamics of estuarine ecosystems and its application in western Patagonia fjords P. Mata Almonacid & C. Medel 10.1016/j.ecolmodel.2021.109871
- Disentangling the effects of climate change and reoligotrophication on primary production in a large lake S. Krishna et al. 10.1007/s00027-022-00910-2
- Resolving ecological feedbacks on the ocean carbon sink in Earth system models D. Armstrong McKay et al. 10.5194/esd-12-797-2021
- Suspension feeders: diversity, principles of particle separation and biomimetic potential L. Hamann & A. Blanke 10.1098/rsif.2021.0741
- Mapping manifestations of parametric uncertainty in projected pelagic oxygen concentrations back to contemporary local model fidelity U. Löptien et al. 10.1038/s41598-021-00334-2
- From Bacteria to Zooplankton: An Integrative Approach Revealing Regional Spatial Patterns During the Spring Phytoplankton Bloom in the Southern Bight of the North Sea A. Aubert et al. 10.3389/fmars.2022.863996
- The role of biota in the Southern Ocean carbon cycle P. Boyd et al. 10.1038/s43017-024-00531-3
- Multiobjective Calibration of a Global Biogeochemical Ocean Model Against Nutrients, Oxygen, and Oxygen Minimum Zones V. Sauerland et al. 10.1029/2018MS001510
- Intermediate Variable Emulation: Using Internal Processes in Simulators to Build More Informative Emulators R. Oughton et al. 10.1137/20M1370902
- Food web structure and intraguild predation affect ecosystem functioning in an established plankton model A. Prowe et al. 10.1002/lno.12039
- Bridging the gap: integrating models and observations for better ecosystem understanding M. Skogen et al. 10.3354/meps14616
- Can neural networks predict steady annual cycles of marine ecosystems? T. Slawig & M. Pfeil 10.1007/s00287-022-01491-y
- Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach M. Stukel et al. 10.5194/bg-19-3595-2022
- Investigating ecosystem connections in the shelf sea environment using complex networks I. Higgs et al. 10.5194/bg-21-731-2024
- Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration I. Kriest et al. 10.5194/bg-20-2645-2023
- Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea D. Kaufman et al. 10.5194/bg-15-73-2018
- Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design D. Ford 10.5194/bg-18-509-2021
- Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models T. Rohr et al. 10.1038/s43247-023-00871-w
- A CMA‐ES Algorithm Allowing for Random Parameters in Model Calibration V. Sauerland et al. 10.1029/2022MS003390
- Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models L. Novi et al. 10.5194/bg-21-3985-2024
- Evaluating ecosystem model complexity for the northwest North Atlantic through surrogate-based optimization A. Kuhn & K. Fennel 10.1016/j.ocemod.2019.101437
- Impacts of parameter uncertainties on deep chlorophyll maximum simulation revealed by the CNOP-P approach Y. Gao et al. 10.1007/s00343-020-0020-y
- Taxon-specific phytoplankton growth, nutrient utilization and light limitation in the oligotrophic Gulf of Mexico N. Yingling et al. 10.1093/plankt/fbab028
- Top-down and bottom-up control of phytoplankton in a mid-latitude continental shelf ecosystem S. Rodríguez-Gálvez et al. 10.1016/j.pocean.2023.103083
- Calibration of a simple and a complex model of global marine biogeochemistry I. Kriest 10.5194/bg-14-4965-2017
- Ocean biogeochemical modelling K. Fennel et al. 10.1038/s43586-022-00154-2
- Cyanobacteria blooms in the Baltic Sea: a review of models and facts B. Munkes et al. 10.5194/bg-18-2347-2021
- How uncertain and observable are marine ecosystem indicators in shelf seas? J. Skákala et al. 10.1016/j.pocean.2024.103249
- Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing K. Kvale & K. Meissner 10.5194/bg-14-4767-2017
- Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0) V. Sauerland et al. 10.5194/gmd-11-1181-2018
- Spatial variability in rates of net primary production (NPP) and onset of the spring bloom in Greenland shelf waters M. Vernet et al. 10.1016/j.pocean.2021.102655
- A global sensitivity analysis approach for marine biogeochemical modeling C. Prieur et al. 10.1016/j.ocemod.2019.101402
- Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data S. Krishna et al. 10.1016/j.ecolmodel.2019.05.016
- Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific Y. Hoshiba et al. 10.5194/os-14-371-2018
- Future digital twins: emulating a highly complex marine biogeochemical model with machine learning to predict hypoxia J. Skákala et al. 10.3389/fmars.2023.1058837
- Revealing the seasonal cycles of Arctic phytoplankton: insights from year-round chlorophyll monitoring E. Ko et al. 10.1088/1748-9326/ad1e7e
- Uncertainties in ocean biogeochemical simulations: Application of ensemble data assimilation to a one-dimensional model N. Mamnun et al. 10.3389/fmars.2022.984236
- Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration C. Chien et al. 10.5194/gmd-13-4691-2020
- Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology's “canonical” activation energies Q. Wang et al. 10.1002/lno.11105
- Recommendations for the formulation of grazing in marine biogeochemical and ecosystem models T. Rohr et al. 10.1016/j.pocean.2022.102878
- The role of microzooplankton trophic interactions in modelling a suite of mesocosm ecosystems B. Su et al. 10.1016/j.ecolmodel.2017.11.013
- A data–model synthesis to explain variability in calcification observed during a CO<sub>2</sub> perturbation mesocosm experiment S. Krishna & M. Schartau 10.5194/bg-14-1857-2017
- Advances in biorenewables-resource-waste systems and modelling M. Guo et al. 10.1016/j.ccst.2023.100142
- Ambiguous controls on simulated diazotrophs in the world oceans U. Löptien & H. Dietze 10.1038/s41598-022-22382-y
- Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design A. Mignot et al. 10.5194/bg-20-1405-2023
- Nitrogen Fixation in Mesoscale Eddies of the North Pacific Subtropical Gyre: Patterns and Mechanisms M. Dugenne et al. 10.1029/2022GB007386
3 citations as recorded by crossref.
- Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export D. Kaufman et al. 10.1002/2016JC012514
- A Simple Finite Difference‐Based Approximation for Biogeochemical Tangent Linear and Adjoint Models J. Mattern & C. Edwards 10.1029/2018JC014283
- Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0) I. Kriest et al. 10.5194/gmd-10-127-2017
Discussed (preprint)
Latest update: 21 Jan 2025
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Plankton models have become an integral part in marine ecosystem and biogeochemical research....
Altmetrics
Final-revised paper
Preprint