Articles | Volume 14, issue 6
Biogeosciences, 14, 1647–1701, 2017
https://doi.org/10.5194/bg-14-1647-2017

Special issue: Data assimilation in carbon/biogeochemical cycles: consistent...

Biogeosciences, 14, 1647–1701, 2017
https://doi.org/10.5194/bg-14-1647-2017

Reviews and syntheses 29 Mar 2017

Reviews and syntheses | 29 Mar 2017

Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling

Markus Schartau et al.

Related authors

Description of a global marine particulate organic carbon-13 isotope data set
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn E. Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-159,https://doi.org/10.5194/essd-2021-159, 2021
Revised manuscript accepted for ESSD
Short summary
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020,https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Reanalysis of vertical mixing in mesocosm experiments: PeECE III and KOSMOS 2013
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020,https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary
Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification
Maria Moreno de Castro, Markus Schartau, and Kai Wirtz
Biogeosciences, 14, 1883–1901, https://doi.org/10.5194/bg-14-1883-2017,https://doi.org/10.5194/bg-14-1883-2017, 2017
Short summary
A data–model synthesis to explain variability in calcification observed during a CO2 perturbation mesocosm experiment
Shubham Krishna and Markus Schartau
Biogeosciences, 14, 1857–1882, https://doi.org/10.5194/bg-14-1857-2017,https://doi.org/10.5194/bg-14-1857-2017, 2017
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Modeling the marine chromium cycle: new constraints on global-scale processes
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021,https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021,https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021,https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021,https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021,https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary

Cited articles

Acevedo-Trejos, E., Brandt, G., Bruggeman, J., and Merico, A.: Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean, Scient. Rep., 5, 8918, https://doi.org/10.1038/srep08918, 2015.
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Proceeding of the Second International Symposium on Information Theory, edited byL Petrov, B. N. and Caski, F., Akademiai Kiado, 267–281, 1973.
Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005.
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Altmetrics
Final-revised paper
Preprint