Articles | Volume 14, issue 6
https://doi.org/10.5194/bg-14-1647-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-1647-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Philip Wallhead
NIVA, Norwegian Institute for Water Research, Bergen, Norway
John Hemmings
Wessex Environmental Associates, Salisbury, UK
now at: Met Office, Exeter, UK
Ulrike Löptien
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Iris Kriest
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Shubham Krishna
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Ben A. Ward
University of Bristol, School of Geographical Sciences, Bristol, UK
Thomas Slawig
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Kiel, Germany
Andreas Oschlies
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023, https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Short summary
Kernel density estimators (KDE) approximate the probability density of a data set without the assumption of an underlying distribution. We used the solution of the diffusion equation, and a new approximation of the optimal smoothing parameter build on two pilot estimation steps, to construct such a KDE best suited for typical characteristics of geoscientific data. The resulting KDE is insensitive to noise and well resolves multimodal data structures as well as boundary-close data.
This article is included in the Encyclopedia of Geosciences
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
This article is included in the Encyclopedia of Geosciences
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
This article is included in the Encyclopedia of Geosciences
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
This article is included in the Encyclopedia of Geosciences
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020, https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary
Short summary
Controlled manipulation of environmental conditions within large enclosures in the ocean, pelagic mesocosms, has become a standard method to explore responses of marine plankton communities to anthropogenic change. Among the challenges of interpreting mesocosm data is the often uncertain role of vertical mixing. This study introduces a mesocosm mixing model that is able to estimate vertical diffusivities and thus provides a tool for future mesocosm data analyses that account for mixing.
This article is included in the Encyclopedia of Geosciences
Maria Moreno de Castro, Markus Schartau, and Kai Wirtz
Biogeosciences, 14, 1883–1901, https://doi.org/10.5194/bg-14-1883-2017, https://doi.org/10.5194/bg-14-1883-2017, 2017
Short summary
Short summary
Observations from different mesocosms exposed to the same treatment level typically show variability that hinders the detection of potential treatments effects. To unearth relevant sources of variability, we developed and performed a data-based model analysis that simulates uncertainty propagation. With this method we investigate the divergence in the outcomes due to the amplification of differences in experimentally unresolved ecological factors within replicates of the same treatment level.
This article is included in the Encyclopedia of Geosciences
Shubham Krishna and Markus Schartau
Biogeosciences, 14, 1857–1882, https://doi.org/10.5194/bg-14-1857-2017, https://doi.org/10.5194/bg-14-1857-2017, 2017
Short summary
Short summary
This study combines experimental data with results from numerical modelling. Data of an ocean acidification mesocosm experiment are used to constrain parameter values of a plankton model. Three different intensities of calcification are resolved with ensembles of optimised model results. Observed variability in data can be well explained by these ensemble model solutions. The simulated ocean acidification effect on calcification is small compared to the spread of the ensemble model solutions.
This article is included in the Encyclopedia of Geosciences
Isabell Hochfeld, Ben A. Ward, Anke Kremp, Juliane Romahn, Alexandra Schmidt, Miklós Bálint, Lutz Becks, Jérôme Kaiser, Helge W. Arz, Sarah Bolius, Laura S. Epp, Markus Pfenninger, Christopher A. Klausmeier, Elena Litchman, and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-3297, https://doi.org/10.5194/egusphere-2024-3297, 2024
Short summary
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
This article is included in the Encyclopedia of Geosciences
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
This article is included in the Encyclopedia of Geosciences
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
This article is included in the Encyclopedia of Geosciences
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
This article is included in the Encyclopedia of Geosciences
Haichao Guo, Wolfgang Koeve, Andreas Oschlies, Yan-Chun He, Tronje Peer Kemena, Lennart Gerke, and Iris Kriest
EGUsphere, https://doi.org/10.5194/egusphere-2024-2552, https://doi.org/10.5194/egusphere-2024-2552, 2024
Short summary
Short summary
We evaluated the effectiveness of the Inverse Gaussian Transit Time Distribution (IG-TTD) in estimating the mean state and temporal changes of seawater age, defined as the duration since water last contact with atmosphere, within the tropical thermocline. Results suggest IG-TTD underestimates seawater age. Besides, IG-TTD constrained by a single tracer gives spurious trends of water age. Incorporating an additional tracer improves IG-TTD's accuracy in estimating temporal change of seawater age.
This article is included in the Encyclopedia of Geosciences
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024, https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary
Short summary
Future sea-level rise is of big significance for coastal regions. The melting and acceleration of glaciers plays a major role in sea-level change. Computer simulation of glaciers costs a lot of computational resources. In this publication, we test a new way of simulating glaciers. This approach produces the same results but has the advantage that it needs much less computation time. As simulations can be obtained with fewer computation resources, higher resolution and physics become affordable.
This article is included in the Encyclopedia of Geosciences
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
This article is included in the Encyclopedia of Geosciences
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
This article is included in the Encyclopedia of Geosciences
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
This article is included in the Encyclopedia of Geosciences
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
This article is included in the Encyclopedia of Geosciences
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023, https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Short summary
Kernel density estimators (KDE) approximate the probability density of a data set without the assumption of an underlying distribution. We used the solution of the diffusion equation, and a new approximation of the optimal smoothing parameter build on two pilot estimation steps, to construct such a KDE best suited for typical characteristics of geoscientific data. The resulting KDE is insensitive to noise and well resolves multimodal data structures as well as boundary-close data.
This article is included in the Encyclopedia of Geosciences
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
This article is included in the Encyclopedia of Geosciences
Eva Friis Møller, Asbjørn Christensen, Janus Larsen, Kenneth D. Mankoff, Mads Hvid Ribergaard, Mikael Sejr, Philip Wallhead, and Marie Maar
Ocean Sci., 19, 403–420, https://doi.org/10.5194/os-19-403-2023, https://doi.org/10.5194/os-19-403-2023, 2023
Short summary
Short summary
Melt from the Greenland ice sheet and sea ice both influence light and nutrient availability in the Arctic coastal ocean. We use a 3D coupled hydrodynamic–biogeochemical model to evaluate the relative importance of these processes for timing, distribution, and magnitude of phytoplankton production in Disko Bay, west Greenland. Our study indicates that decreasing sea ice and more freshwater discharge can work synergistically and increase primary productivity of the coastal ocean around Greenland.
This article is included in the Encyclopedia of Geosciences
Jiajun Wu, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 14, 185–221, https://doi.org/10.5194/esd-14-185-2023, https://doi.org/10.5194/esd-14-185-2023, 2023
Short summary
Short summary
In this study we investigate an ocean-based carbon dioxide removal method: macroalgae open-ocean mariculture and sinking (MOS), which aims to cultivate seaweed in the open-ocean surface and to sink matured biomass quickly to the deep seafloor. Our results suggest that MOS has considerable potential as an ocean-based CDR method. However, MOS has inherent side effects on marine ecosystems and biogeochemistry, which will require careful evaluation beyond this first idealized modeling study.
This article is included in the Encyclopedia of Geosciences
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
This article is included in the Encyclopedia of Geosciences
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
This article is included in the Encyclopedia of Geosciences
Sophy Oliver, Coralia Cartis, Iris Kriest, Simon F. B Tett, and Samar Khatiwala
Geosci. Model Dev., 15, 3537–3554, https://doi.org/10.5194/gmd-15-3537-2022, https://doi.org/10.5194/gmd-15-3537-2022, 2022
Short summary
Short summary
Global ocean biogeochemical models are used within Earth system models which are used to predict future climate change. However, these are very computationally expensive to run and therefore are rarely routinely improved or calibrated to real oceanic observations. Here we apply a new, fast optimisation algorithm to one such model and show that it can calibrate the model much faster than previously managed, therefore encouraging further ocean biogeochemical model improvements.
This article is included in the Encyclopedia of Geosciences
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
This article is included in the Encyclopedia of Geosciences
Markus Pfeil and Thomas Slawig
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-392, https://doi.org/10.5194/gmd-2021-392, 2022
Revised manuscript not accepted
Short summary
Short summary
In investigating the global carbon cycle, shortening the runtime of the simulation of marine ecosystem models is an important issue. We present methods that automatically adjust the time step during the simulation of a steady state using transport matrices. They apply always the time step as large as possible. Two methods reduced the runtime significantly, depending on the complexity of the model. An important property was that small negative concentrations were ignored during the spin-up.
This article is included in the Encyclopedia of Geosciences
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
This article is included in the Encyclopedia of Geosciences
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
This article is included in the Encyclopedia of Geosciences
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
This article is included in the Encyclopedia of Geosciences
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
This article is included in the Encyclopedia of Geosciences
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
This article is included in the Encyclopedia of Geosciences
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
This article is included in the Encyclopedia of Geosciences
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
This article is included in the Encyclopedia of Geosciences
Xiaoshuang Li, Richard Garth James Bellerby, Jianzhong Ge, Philip Wallhead, Jing Liu, and Anqiang Yang
Geosci. Model Dev., 13, 5103–5117, https://doi.org/10.5194/gmd-13-5103-2020, https://doi.org/10.5194/gmd-13-5103-2020, 2020
Short summary
Short summary
We have developed an ANN model to predict pH using 11 cruise datasets from 2013 to 2017,
demonstrated its reliability using three cruise datasets during 2018 and applied it to
retrieve monthly pH for the period 2000 to 2016 on the East China Sea shelf using the
ANN model in combination with input variables from the Changjiang biology Finite-Volume
Coastal Ocean Model. This approach may be a valuable tool for understanding the seasonal
variation of pH in poorly observed regions.
This article is included in the Encyclopedia of Geosciences
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
This article is included in the Encyclopedia of Geosciences
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
This article is included in the Encyclopedia of Geosciences
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
This article is included in the Encyclopedia of Geosciences
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020, https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary
Short summary
Controlled manipulation of environmental conditions within large enclosures in the ocean, pelagic mesocosms, has become a standard method to explore responses of marine plankton communities to anthropogenic change. Among the challenges of interpreting mesocosm data is the often uncertain role of vertical mixing. This study introduces a mesocosm mixing model that is able to estimate vertical diffusivities and thus provides a tool for future mesocosm data analyses that account for mixing.
This article is included in the Encyclopedia of Geosciences
Alessandro Cotronei and Thomas Slawig
Geosci. Model Dev., 13, 2783–2804, https://doi.org/10.5194/gmd-13-2783-2020, https://doi.org/10.5194/gmd-13-2783-2020, 2020
Short summary
Short summary
We converted the radiation part of the atmospheric model ECHAM to single-precision arithmetic, using a step-by-step change in all modules. A small code portion still requires higher precision. The generated code can be easily changed from double to single precision and vice versa. The quality of the output of the single-precision version is comparable to observational data and the one of the original code. The runtime was reduced by 40 %, and the energy consumption could also be decreased.
This article is included in the Encyclopedia of Geosciences
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
This article is included in the Encyclopedia of Geosciences
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Ulrike Löptien and Heiner Dietze
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-96, https://doi.org/10.5194/bg-2020-96, 2020
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen fixation, conducted by specific microorganisms, makes molecular nitrogen available for marine biota. By this means this process exerts major control on the growth of algae in the ocean. This study compares two contemporary paradigms, anticipating the ecological niche of N-fixing organisms in an Earth System Model. We illustrate respective uncertainties in climate projections and suggest specific observations to advance the reliable representation of nitrogen fixation in numerical models.
This article is included in the Encyclopedia of Geosciences
Stephanie Dutkiewicz, Pedro Cermeno, Oliver Jahn, Michael J. Follows, Anna E. Hickman, Darcy A. A. Taniguchi, and Ben A. Ward
Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, https://doi.org/10.5194/bg-17-609-2020, 2020
Short summary
Short summary
Phytoplankton are an essential component of the marine food web and earth's carbon cycle. We use observations, ecological theory and a unique trait-based ecosystem model to explain controls on patterns of marine phytoplankton biodiversity. We find that different dimensions of diversity (size classes, biogeochemical functional groups, thermal norms) are controlled by a disparate combination of mechanisms. This may explain why previous studies of phytoplankton diversity had conflicting results.
This article is included in the Encyclopedia of Geosciences
Heiner Dietze, Ulrike Löptien, and Julia Getzlaff
Geosci. Model Dev., 13, 71–97, https://doi.org/10.5194/gmd-13-71-2020, https://doi.org/10.5194/gmd-13-71-2020, 2020
Short summary
Short summary
We present a new near-global coupled biogeochemical ocean-circulation model configuration of the Southern Ocean. The configuration features both a relatively equilibrated oceanic carbon inventory and an explicit representation of mesoscale eddies. In this paper, we document the model configuration and showcase its potential to tackle research questions such as the Southern Ocean carbon uptake dynamics on decadal timescales.
This article is included in the Encyclopedia of Geosciences
Fabian Reith, Wolfgang Koeve, David P. Keller, Julia Getzlaff, and Andreas Oschlies
Earth Syst. Dynam., 10, 711–727, https://doi.org/10.5194/esd-10-711-2019, https://doi.org/10.5194/esd-10-711-2019, 2019
Short summary
Short summary
This modeling study is the first one to look at the suitability and collateral effects of direct CO2 injection into the deep ocean as a means to bridge the gap between CO2 emissions and climate impacts of an intermediate CO2 emission scenario and a temperature target on a millennium timescale, such as the 1.5 °C climate target of the Paris Agreement.
This article is included in the Encyclopedia of Geosciences
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
This article is included in the Encyclopedia of Geosciences
Daniela Niemeyer, Iris Kriest, and Andreas Oschlies
Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019, https://doi.org/10.5194/bg-16-3095-2019, 2019
Short summary
Short summary
Recent studies suggest spatial variations of the marine particle flux length scale. Using a global biogeochemical ocean model, we investigate whether changes in particle size and size-dependent sinking can explain this variation. We address uncertainties by varying aggregate properties and circulation. Both aspects have an impact on the representation of nutrients, oxygen and oxygen minimum zones. The formation and sinking of large aggregates in productive areas lead to deeper flux penetration.
This article is included in the Encyclopedia of Geosciences
Yonss Saranga José, Lothar Stramma, Sunke Schmidtko, and Andreas Oschlies
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-155, https://doi.org/10.5194/bg-2019-155, 2019
Revised manuscript accepted for BG
Short summary
Short summary
In situ observations along the Peruvian and Chilean coasts have exhibited variability in the water column oxygen concentration. This variability, which is attributed to the El Niño Southern Oscillation (ENSO), might have implication on the vertical extension of the Eastern Tropical South Pacific (ETSP) oxygen minimum zone. Here using a coupled physical-biogeochemical model, we provide new insights into how ENSO variability affects the vertical extension of the oxygen-poor waters of the ETSP.
This article is included in the Encyclopedia of Geosciences
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Short summary
The paper presents a novel study based on the traits of shell size, calcification and feeding behaviour of two planktonic foraminifera life stages using modelling simulations. With the model, we tested the cost and benefit of calcification and explored how the interactions of planktonic foraminifera among other plankton groups influence their biomass under different environmental conditions. Our results provide new insights into environmental controls in planktonic foraminifera ecology.
This article is included in the Encyclopedia of Geosciences
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
This article is included in the Encyclopedia of Geosciences
Olaf Duteil, Andreas Oschlies, and Claus W. Böning
Biogeosciences, 15, 7111–7126, https://doi.org/10.5194/bg-15-7111-2018, https://doi.org/10.5194/bg-15-7111-2018, 2018
Short summary
Short summary
Oxygen-depleted regions of the Pacific Ocean are currently expanding, which is threatening marine habitats. Based on numerical simulations, we show that the decrease in the intensity of the trade winds and the subsequent slowdown of the oceanic currents lead to a reduction in oxygen supply. Our study suggests that the prevailing positive conditions of the Pacific Decadal Oscillation since 1975, a major source of natural variability, may explain a significant part of the current deoxygenation.
This article is included in the Encyclopedia of Geosciences
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Short summary
A novel configuration of an Earth system model includes a diverse plankton community. The model – EcoGEnIE – is sufficiently complex to reproduce a realistic, size-structured plankton community, while at the same time retaining the efficiency to run to a global steady state (~ 10k years). The increased capabilities of EcoGEnIE will allow future exploration of ecological communities on much longer timescales than have so far been examined in global ocean models and particularly for past climate.
This article is included in the Encyclopedia of Geosciences
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
This article is included in the Encyclopedia of Geosciences
Volkmar Sauerland, Ulrike Löptien, Claudine Leonhard, Andreas Oschlies, and Anand Srivastav
Geosci. Model Dev., 11, 1181–1198, https://doi.org/10.5194/gmd-11-1181-2018, https://doi.org/10.5194/gmd-11-1181-2018, 2018
Short summary
Short summary
We present a concept to prove that a parametric model is well calibrated, i.e., that changes of its free parameters cannot lead to a much better model–data misfit anymore. The intention is motivated by the fact that calibrating global biogeochemical ocean models is important for assessment and inter-model comparison but computationally expensive.
This article is included in the Encyclopedia of Geosciences
Nadine Mengis, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 9, 15–31, https://doi.org/10.5194/esd-9-15-2018, https://doi.org/10.5194/esd-9-15-2018, 2018
Short summary
Short summary
The Systematic Correlation Matrix Evaluation (SCoMaE) method applies statistical information to systematically select, transparent, nonredundant indicators for a comprehensive assessment of the Earth system state. We show that due to changing climate forcing, such as anthropogenic climate change, the ad hoc assessment indicators might need to be reevaluated. Within an iterative process, this method would allow us to select scientifically consistent and societally relevant assessment indicators.
This article is included in the Encyclopedia of Geosciences
Daniel E. Kaufman, Marjorie A. M. Friedrichs, John C. P. Hemmings, and Walker O. Smith Jr.
Biogeosciences, 15, 73–90, https://doi.org/10.5194/bg-15-73-2018, https://doi.org/10.5194/bg-15-73-2018, 2018
Short summary
Short summary
Computer simulations of the highly variable phytoplankton in the Ross Sea demonstrated how incorporating data from different sources (satellite, ship, or glider) results in different system interpretations. For example, simulations assimilating satellite-based data produced lower carbon export estimates. Combining observations with models in this remote, harsh, and biologically variable environment should include consideration of the potential impacts of data frequency, duration, and coverage.
This article is included in the Encyclopedia of Geosciences
Shamil Yakubov, Philip Wallhead, Elizaveta Protsenko, and Evgeniy Yakushev
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-299, https://doi.org/10.5194/gmd-2017-299, 2017
Preprint withdrawn
Short summary
Short summary
Aquatic biogeochemical processes can strongly interact, especially in polar regions, with processes occurring in adjacent ice and sediment layers, yet there are few modelling tools to simulate these systems in a fully coupled manner. We have developed a 1D transport model that allows simultaneous simulation of the biogeochemistry of 3 different media: ice, water, and sediments. Description of transportation processes in ice, water, and sediments for both solutes and solids was provided.
This article is included in the Encyclopedia of Geosciences
Iris Kriest
Biogeosciences, 14, 4965–4984, https://doi.org/10.5194/bg-14-4965-2017, https://doi.org/10.5194/bg-14-4965-2017, 2017
Short summary
Short summary
Early biogeochemical ocean models were of a simple structure, with few biogeochemical components. I here investigate whether additional biological complexity improves the fit with respect to observed global climatologies of annual mean nutrients and oxygen. After optimisation against these tracers a simple model fits observations almost as well as a more complex one, also with respect to independent estimates of global biogeochemical fluxes.
This article is included in the Encyclopedia of Geosciences
Per Pemberton, Ulrike Löptien, Robinson Hordoir, Anders Höglund, Semjon Schimanke, Lars Axell, and Jari Haapala
Geosci. Model Dev., 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, https://doi.org/10.5194/gmd-10-3105-2017, 2017
Short summary
Short summary
The Baltic Sea is seasonally ice covered with intense wintertime ship traffic and a sensitive ecosystem. Understanding the sea-ice pack is important for climate effect studies and forecasting. A NEMO-LIM3.6-based model setup for the North Sea/Baltic Sea is introduced, including a method for ice in the coastal zone. We evaluate different sea-ice parameters and overall find that the model agrees well with the observation though deformed ice is more challenging to capture.
This article is included in the Encyclopedia of Geosciences
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017, https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Short summary
Computer models of ocean biology and chemistry are becoming increasingly complex, and thus more expensive, to run. One solution is to approximate the behaviour of the ocean physics and store that information outside of the model. That
This article is included in the Encyclopedia of Geosciences
offlineinformation can then be used to calculate a steady-state solution from the model's biology and chemistry, without waiting for a traditional
onlineintegration to complete. We show this offline method reproduces online results and is 100 times faster.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
This article is included in the Encyclopedia of Geosciences
Daniela Niemeyer, Tronje P. Kemena, Katrin J. Meissner, and Andreas Oschlies
Earth Syst. Dynam., 8, 357–367, https://doi.org/10.5194/esd-8-357-2017, https://doi.org/10.5194/esd-8-357-2017, 2017
Maria Moreno de Castro, Markus Schartau, and Kai Wirtz
Biogeosciences, 14, 1883–1901, https://doi.org/10.5194/bg-14-1883-2017, https://doi.org/10.5194/bg-14-1883-2017, 2017
Short summary
Short summary
Observations from different mesocosms exposed to the same treatment level typically show variability that hinders the detection of potential treatments effects. To unearth relevant sources of variability, we developed and performed a data-based model analysis that simulates uncertainty propagation. With this method we investigate the divergence in the outcomes due to the amplification of differences in experimentally unresolved ecological factors within replicates of the same treatment level.
This article is included in the Encyclopedia of Geosciences
Shubham Krishna and Markus Schartau
Biogeosciences, 14, 1857–1882, https://doi.org/10.5194/bg-14-1857-2017, https://doi.org/10.5194/bg-14-1857-2017, 2017
Short summary
Short summary
This study combines experimental data with results from numerical modelling. Data of an ocean acidification mesocosm experiment are used to constrain parameter values of a plankton model. Three different intensities of calcification are resolved with ensembles of optimised model results. Observed variability in data can be well explained by these ensemble model solutions. The simulated ocean acidification effect on calcification is small compared to the spread of the ensemble model solutions.
This article is included in the Encyclopedia of Geosciences
Heiner Dietze, Julia Getzlaff, and Ulrike Löptien
Biogeosciences, 14, 1561–1576, https://doi.org/10.5194/bg-14-1561-2017, https://doi.org/10.5194/bg-14-1561-2017, 2017
Short summary
Short summary
The Southern Ocean is a sink for anthropogenic carbon. Projections of how this sink will evolve in an ever-warming climate are based on coupled ocean-circulation–biogeochemical models. This study compares uncertainties of simulated oceanic carbon uptake associated to physical (eddy) parameterizations with those associated wtih (unconstrained) supply of bioavailable iron supply to the surface ocean.
This article is included in the Encyclopedia of Geosciences
Yonss Saranga José, Heiner Dietze, and Andreas Oschlies
Biogeosciences, 14, 1349–1364, https://doi.org/10.5194/bg-14-1349-2017, https://doi.org/10.5194/bg-14-1349-2017, 2017
Short summary
Short summary
This study aims to investigate the diverse subsurface nutrient patterns observed within anticyclonic eddies in the upwelling system off Peru. Two simulated anticyclonic eddies with opposing subsurface nitrate concentrations were analysed. The results show that diverse nutrient patterns within anticyclonic eddies are related to the presence of water mass from different origins at different depths, responding to variations in depth of the circulation strength at the edge of the eddy.
This article is included in the Encyclopedia of Geosciences
Evgeniy V. Yakushev, Elizaveta A. Protsenko, Jorn Bruggeman, Philip Wallhead, Svetlana V. Pakhomova, Shamil Kh. Yakubov, Richard G. J. Bellerby, and Raoul-Marie Couture
Geosci. Model Dev., 10, 453–482, https://doi.org/10.5194/gmd-10-453-2017, https://doi.org/10.5194/gmd-10-453-2017, 2017
Short summary
Short summary
This paper presents a new benthic–pelagic biogeochemical model (BROM) that combines a relatively simple pelagic ecosystem model with a detailed biogeochemical model of the coupled cycles of N, P, Si, C, O, S, Mn, Fe in the water column, benthic boundary layer, and sediments, with a focus on oxygen and redox state. BROM should be of interest for the study of a range of environmental applications in addition to hypoxia, such as benthic nutrient recycling, redox biogeochemistry, and eutrophication.
This article is included in the Encyclopedia of Geosciences
Iris Kriest, Volkmar Sauerland, Samar Khatiwala, Anand Srivastav, and Andreas Oschlies
Geosci. Model Dev., 10, 127–154, https://doi.org/10.5194/gmd-10-127-2017, https://doi.org/10.5194/gmd-10-127-2017, 2017
Short summary
Short summary
Global biogeochemical ocean models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing features of the present ocean and their sensitivity to possible environmental changes. We present the first results from a framework that combines an offline biogeochemical tracer transport model with an estimation of distribution algorithm, calibrating six biogeochemical model parameters against observed oxygen and nutrients.
This article is included in the Encyclopedia of Geosciences
Fabian Reith, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 7, 797–812, https://doi.org/10.5194/esd-7-797-2016, https://doi.org/10.5194/esd-7-797-2016, 2016
Jaroslaw Piwonski and Thomas Slawig
Geosci. Model Dev., 9, 3729–3750, https://doi.org/10.5194/gmd-9-3729-2016, https://doi.org/10.5194/gmd-9-3729-2016, 2016
Short summary
Short summary
In order to fundamentally tackle the problem of parameter identification for marine ecosystem models in 3-D, we introduced a general biogeochemical programming interface that fits into the optimization context. Moreover, we implemented a comprehensive parallel solver software for periodic steady states that uses the interface to couple marine ecosystem models to a transport matrix driver. We validated the new implementation using a hierarchy of biogeochemical models.
This article is included in the Encyclopedia of Geosciences
Bei Su, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 13, 4985–5001, https://doi.org/10.5194/bg-13-4985-2016, https://doi.org/10.5194/bg-13-4985-2016, 2016
Short summary
Short summary
Previously identified positive feedbacks within the nitrogen cycle in the eastern tropical South Pacific (ETSP) have challenged our understanding of the observed dynamics and stability of the nitrogen inventory. We present a box model analysis of the biological and biogeochemical relations in the ETSP among nitrogen deposition, benthic denitrification and phosphate regeneration. Our results suggest dominant stabilizing feedbacks tending to keep a balanced nitrogen inventory in the ETSP.
This article is included in the Encyclopedia of Geosciences
Heiner Dietze and Ulrike Löptien
Ocean Sci., 12, 977–986, https://doi.org/10.5194/os-12-977-2016, https://doi.org/10.5194/os-12-977-2016, 2016
Short summary
Short summary
Winds blowing over the ocean drive ocean currents. The oceanic response to winds is, in turn, influenced by ocean currents. Theoretical considerations suggest that the latter effect is especially pronounced in the Baltic Sea. The study presented here puts theses theoretical considerations in a high-resolution ocean circulation model of the Baltic Sea to the test.
This article is included in the Encyclopedia of Geosciences
Jörg Schwinger, Nadine Goris, Jerry F. Tjiputra, Iris Kriest, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Karen M. Assmann, and Christoph Heinze
Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, https://doi.org/10.5194/gmd-9-2589-2016, 2016
Short summary
Short summary
We present an evaluation of the ocean carbon cycle stand-alone configuration of the Norwegian Earth System Model. A re-tuning of the ecosystem parameterisation improves surface tracer fields between versions 1 and 1.2 of the model. Focus is placed on the evaluation of newly implemented parameterisations of the biological carbon pump (i.e. the sinking of particular organic carbon). We find that the model previously underestimated the carbon transport into the deep ocean below 2000 m depth.
This article is included in the Encyclopedia of Geosciences
I. Kriest and A. Oschlies
Geosci. Model Dev., 8, 2929–2957, https://doi.org/10.5194/gmd-8-2929-2015, https://doi.org/10.5194/gmd-8-2929-2015, 2015
Short summary
Short summary
We use a global model of oceanic P, N, and O2 cycles to investigate consequences of uncertainties in description of organic matter sinking, remineralization, denitrification, and N2-Fixation. After all biogeochemical and physical processes have been spun-up into a dynamically consistent steady-state, particle sinking and oxidant affinities of aerobic and anaerobic remineralization determine the extent of oxygen minimum zones, global nitrogen fluxes, and the oceanic nitrogen inventory.
This article is included in the Encyclopedia of Geosciences
U. Löptien and H. Dietze
Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, https://doi.org/10.5194/os-11-573-2015, 2015
Short summary
Short summary
Marine biogeochemical ocean models are embedded into earth system models - which are, to an increasing degree, applied to project the fate of our warming world. These biogeochemical models generally depend on poorly constrained model parameters. In this study we investigate the the demands on observations for an objective estimation of such parameters. A major result is that even modest noise (10%) inherent to observations can hinder the assignment of reasonable parameters.
This article is included in the Encyclopedia of Geosciences
W. Koeve, H. Wagner, P. Kähler, and A. Oschlies
Geosci. Model Dev., 8, 2079–2094, https://doi.org/10.5194/gmd-8-2079-2015, https://doi.org/10.5194/gmd-8-2079-2015, 2015
Short summary
Short summary
The natural abundance of 14C in CO2 dissolved in seawater is often used to evaluate circulation and age in the ocean and in ocean models. We study limitations of using natural 14C to determine the time elapsed since water had contact with the atmosphere. We find that, globally, bulk 14C age is dominated by two equally important components, (1) the time component of circulation and (2) the “preformed 14C-age”. Considering preformed 14C-age is critical for an assessment of circulation in models.
This article is included in the Encyclopedia of Geosciences
L. Nickelsen, D. P. Keller, and A. Oschlies
Geosci. Model Dev., 8, 1357–1381, https://doi.org/10.5194/gmd-8-1357-2015, https://doi.org/10.5194/gmd-8-1357-2015, 2015
Short summary
Short summary
In this paper we find that including the marine cycle of the phytoplankton nutrient iron in a global climate model improves the agreement between observed and simulated nutrient concentrations in the ocean and that a better description of the source of iron from the sediment to the ocean is more important than that of iron-containing dust deposition. Finally, we find that the response of the iron cycle to climate warming affects the phytoplankton growth and nutrient cycles.
This article is included in the Encyclopedia of Geosciences
J. Reimer, M. Schuerch, and T. Slawig
Geosci. Model Dev., 8, 791–804, https://doi.org/10.5194/gmd-8-791-2015, https://doi.org/10.5194/gmd-8-791-2015, 2015
Short summary
Short summary
Model parameters are usually optimized based on measurements. These measurements are often time-consuming or costly. The conditions under which theses measurements are carried out, also called experimental designs, can be optimized so that with minimum effort and cost a maximum accuracy can be achieved. For this, we present different approaches together with their implementation in an MATLAB toolbox. We demonstrate their application to different models for sedimentation in salt marshes.
This article is included in the Encyclopedia of Geosciences
B. Su, M. Pahlow, H. Wagner, and A. Oschlies
Biogeosciences, 12, 1113–1130, https://doi.org/10.5194/bg-12-1113-2015, https://doi.org/10.5194/bg-12-1113-2015, 2015
Short summary
Short summary
A box model of the eastern tropical South Pacific oxygen minimum zone suggests that anaerobic water-column remineralization rates have to be slower than aerobic remineralization in order to explain the relatively high values of observed nitrate concentrations. Lateral oxygen supply sufficient to oxidize about one-fifth of the export production is required to prevent an anoxic deep ocean. Under these circumstances, the region can be a net source of fixed nitrogen to the surrounding ocean.
This article is included in the Encyclopedia of Geosciences
U. Löptien and L. Axell
The Cryosphere, 8, 2409–2418, https://doi.org/10.5194/tc-8-2409-2014, https://doi.org/10.5194/tc-8-2409-2014, 2014
Short summary
Short summary
The Baltic Sea is a seasonally ice-covered marginal sea in central northern Europe. In wintertime, on-time shipping depends crucially on sea ice forecasts. Among the forecasting tools heavily applied are numerical models, which suffer from a lack of calibration data because relevant ice properties are difficult (and costly) to monitor. We developed an innovative and inexpensive approach, by using ship speed observations obtained by the automatic identification system (AIS) to asses such models.
This article is included in the Encyclopedia of Geosciences
U. Löptien and H. Dietze
Earth Syst. Sci. Data, 6, 367–374, https://doi.org/10.5194/essd-6-367-2014, https://doi.org/10.5194/essd-6-367-2014, 2014
W. Koeve, O. Duteil, A. Oschlies, P. Kähler, and J. Segschneider
Geosci. Model Dev., 7, 2393–2408, https://doi.org/10.5194/gmd-7-2393-2014, https://doi.org/10.5194/gmd-7-2393-2014, 2014
H. Dietze, U. Löptien, and K. Getzlaff
Geosci. Model Dev., 7, 1713–1731, https://doi.org/10.5194/gmd-7-1713-2014, https://doi.org/10.5194/gmd-7-1713-2014, 2014
A. E. F. Prowe, M. Pahlow, S. Dutkiewicz, and A. Oschlies
Biogeosciences, 11, 3397–3407, https://doi.org/10.5194/bg-11-3397-2014, https://doi.org/10.5194/bg-11-3397-2014, 2014
I. Kriest and A. Oschlies
Biogeosciences, 10, 8401–8422, https://doi.org/10.5194/bg-10-8401-2013, https://doi.org/10.5194/bg-10-8401-2013, 2013
O. Duteil, W. Koeve, A. Oschlies, D. Bianchi, E. Galbraith, I. Kriest, and R. Matear
Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, https://doi.org/10.5194/bg-10-7723-2013, 2013
C. J. Somes, A. Oschlies, and A. Schmittner
Biogeosciences, 10, 5889–5910, https://doi.org/10.5194/bg-10-5889-2013, https://doi.org/10.5194/bg-10-5889-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
A. Landolfi, H. Dietze, W. Koeve, and A. Oschlies
Biogeosciences, 10, 1351–1363, https://doi.org/10.5194/bg-10-1351-2013, https://doi.org/10.5194/bg-10-1351-2013, 2013
M. El Jarbi, J. Rückelt, T. Slawig, and A. Oschlies
Biogeosciences, 10, 1169–1182, https://doi.org/10.5194/bg-10-1169-2013, https://doi.org/10.5194/bg-10-1169-2013, 2013
E. Siewertsen, J. Piwonski, and T. Slawig
Geosci. Model Dev., 6, 17–28, https://doi.org/10.5194/gmd-6-17-2013, https://doi.org/10.5194/gmd-6-17-2013, 2013
L. M. Zamora, A. Oschlies, H. W. Bange, K. B. Huebert, J. D. Craig, A. Kock, and C. R. Löscher
Biogeosciences, 9, 5007–5022, https://doi.org/10.5194/bg-9-5007-2012, https://doi.org/10.5194/bg-9-5007-2012, 2012
Related subject area
Biogeochemistry: Modelling, Aquatic
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Efficiency metrics for ocean alkalinity enhancement under responsive and prescribed atmosphere conditions
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Investigating ecosystem connections in the shelf sea environment using complex networks
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Riverine impact on future projections of marine primary production and carbon uptake
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 2: statistical modeling and hypoxia prediction
Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea
Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modeling approach using the Carbon-Generic Estuarine Model
A modelling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf
Modeling the marine chromium cycle: new constraints on global-scale processes
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Impact of bottom trawling on sediment biogeochemistry: a modelling approach
Cyanobacteria blooms in the Baltic Sea: a review of models and facts
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Oxygen dynamics and evaluation of the single-station diel oxygen model across contrasting geologies
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea
A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations
Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Long-term response of oceanic carbon uptake to global warming via physical and biological pumps
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024, https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Short summary
The Arctic Ocean experiences significant seasonal and year-to-year changes, impacting marine plankton populations. Using a plankton community model, we studied these effects on plankton communities and their influence on fish production. Our findings revealed earlier plankton blooms, shifts towards more carnivorous zooplankton, and increased fishery potential during summertime, especially in warmer years with less ice, highlighting the delicate balance of Arctic ecosystems.
This article is included in the Encyclopedia of Geosciences
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
This article is included in the Encyclopedia of Geosciences
Michael Dominik Tyka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2150, https://doi.org/10.5194/egusphere-2024-2150, 2024
Short summary
Short summary
Marine CO2 removal (mCDR) is a promising technology for removing legacy emissions from the atmosphere. Its indirect nature makes it difficult to assess experimentally; instead one relies heavily on simulation. Many past papers treated the atmosphere as non-responsive to the intervention studied. We show that even under these simplified assumptions, the increase in ocean CO2 inventory is equal to the equivalent quantity of direct CO2 removals occurring over time, in a realistic atmosphere.
This article is included in the Encyclopedia of Geosciences
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024, https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Short summary
The structure of plankton communities is central to global cycles of carbon, nitrogen, and other elements. This study explored the sensitivity of different assumptions about highest-predator mortality in ecosystem models with contrasting food web structures. In the context of environmental data, we find support for models assuming a density-dependent mortality of the highest predator, irrespective of assumed food web structure.
This article is included in the Encyclopedia of Geosciences
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024, https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Short summary
Developed for the Gulf of Mexico (2006–2020), a 3D hydrodynamic–biogeochemical model validated against in situ data reveals the impact of nutrients and plankton diversity on dissolved oxygen dynamics. It highlights the role of physical processes, sediment oxygen consumption, and nutrient distribution in shaping bottom oxygen levels and hypoxia. The model underscores the importance of complex plankton interactions for understanding primary production and hypoxia evolution.
This article is included in the Encyclopedia of Geosciences
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
This article is included in the Encyclopedia of Geosciences
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024, https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary
Short summary
A complex network is a way of representing which parts of a system are connected to other parts. We have constructed a complex network based on an ecosystem–ocean model. From this, we can identify patterns in the structure and areas of similar behaviour. This can help to understand how natural, or human-made, changes will affect the shelf sea ecosystem, and it can be used in multiple future applications such as improving modelling, data assimilation, or machine learning.
This article is included in the Encyclopedia of Geosciences
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
This article is included in the Encyclopedia of Geosciences
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
This article is included in the Encyclopedia of Geosciences
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
This article is included in the Encyclopedia of Geosciences
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
This article is included in the Encyclopedia of Geosciences
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
This article is included in the Encyclopedia of Geosciences
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
This article is included in the Encyclopedia of Geosciences
Michael R. Stukel, Moira Décima, and Michael R. Landry
Biogeosciences, 19, 3595–3624, https://doi.org/10.5194/bg-19-3595-2022, https://doi.org/10.5194/bg-19-3595-2022, 2022
Short summary
Short summary
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term marine carbon sequestration. It is driven by many physical, chemical, and ecological processes. We developed a model of the BCP constrained using data from 11 cruises in 4 different ocean regions. Our results show that sinking particles and vertical mixing are more important than transport mediated by vertically migrating zooplankton. They also highlight the uncertainty in current estimates of the BCP.
This article is included in the Encyclopedia of Geosciences
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
This article is included in the Encyclopedia of Geosciences
Yanda Ou, Bin Li, and Z. George Xue
Biogeosciences, 19, 3575–3593, https://doi.org/10.5194/bg-19-3575-2022, https://doi.org/10.5194/bg-19-3575-2022, 2022
Short summary
Short summary
Over the past decades, the Louisiana–Texas shelf has been suffering recurring hypoxia (dissolved oxygen < 2 mg L−1). We developed a novel prediction model using state-of-the-art statistical techniques based on physical and biogeochemical data provided by a numerical model. The model can capture both the magnitude and onset of the annual hypoxia events. This study also demonstrates that it is possible to use a global model forecast to predict regional ocean water quality.
This article is included in the Encyclopedia of Geosciences
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
This article is included in the Encyclopedia of Geosciences
Brandon J. McNabb and Philippe D. Tortell
Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, https://doi.org/10.5194/bg-19-1705-2022, 2022
Short summary
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
This article is included in the Encyclopedia of Geosciences
Xi Wei, Josette Garnier, Vincent Thieu, Paul Passy, Romain Le Gendre, Gilles Billen, Maia Akopian, and Goulven Gildas Laruelle
Biogeosciences, 19, 931–955, https://doi.org/10.5194/bg-19-931-2022, https://doi.org/10.5194/bg-19-931-2022, 2022
Short summary
Short summary
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum and are often strongly impacted by anthropogenic activities. We calculated nutrient in and out fluxes by using a 1-D transient model for seven estuaries along the French Atlantic coast. Among these, large estuaries with high residence times showed higher retention rates than medium and small ones. All reveal coastal eutrophication due to the excess of diffused nitrogen from intensive agricultural river basins.
This article is included in the Encyclopedia of Geosciences
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
This article is included in the Encyclopedia of Geosciences
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
This article is included in the Encyclopedia of Geosciences
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
This article is included in the Encyclopedia of Geosciences
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
This article is included in the Encyclopedia of Geosciences
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
This article is included in the Encyclopedia of Geosciences
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021, https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary
Short summary
A new approach to predicting the accumulation of radionuclides in fish was developed by taking into account heterogeneity of distribution of contamination in the organism and dependence of metabolic process rates on the fish mass. Predicted concentrations of radionuclides in fish agreed well with the laboratory and field measurements. The model with the defined generic parameters could be used in marine environments without local calibration, which is important for emergency decision support.
This article is included in the Encyclopedia of Geosciences
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
This article is included in the Encyclopedia of Geosciences
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
This article is included in the Encyclopedia of Geosciences
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
This article is included in the Encyclopedia of Geosciences
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
This article is included in the Encyclopedia of Geosciences
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
This article is included in the Encyclopedia of Geosciences
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
This article is included in the Encyclopedia of Geosciences
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
This article is included in the Encyclopedia of Geosciences
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020, https://doi.org/10.5194/bg-17-5043-2020, 2020
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020, https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
Short summary
Zooplankton are the smallest animals in the ocean and important food for fish. Despite their importance, zooplankton have been relatively undersampled. To better understand the zooplankton community in the Gulf of Mexico (GoM), we developed a model to simulate their dynamics. We found that heterotrophic protists are important for supporting mesozooplankton, which are the primary prey of larval fish. The model developed in this study has the potential to improve fisheries management in the GoM.
This article is included in the Encyclopedia of Geosciences
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
This article is included in the Encyclopedia of Geosciences
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
This article is included in the Encyclopedia of Geosciences
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
Short summary
We use a numerical model to infer annual changes of surface carbon chemistry in the Gulf of Mexico (GoM). The main seasonality drivers of partial pressure of carbon dioxide and aragonite saturation state from the model are temperature and river runoff. The GoM basin is a carbon sink in winter–spring and carbon source in summer–fall, but uptake prevails near the Mississippi Delta year-round due to high biological production. Our model results show good correspondence with observational studies.
This article is included in the Encyclopedia of Geosciences
Simon J. Parker
Biogeosciences, 17, 305–315, https://doi.org/10.5194/bg-17-305-2020, https://doi.org/10.5194/bg-17-305-2020, 2020
Short summary
Short summary
Dissolved oxygen (DO) models typically assume constant ecosystem respiration over the course of a single day. Using a data-driven approach, this research examines this assumption in four streams across two (hydro-)geological types (Chalk and Greensand). Despite hydrogeological equivalence in terms of baseflow index for each hydrogeological pairing, model suitability differed within, rather than across, geology types. This corresponded with associated differences in timings of DO minima.
This article is included in the Encyclopedia of Geosciences
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
This article is included in the Encyclopedia of Geosciences
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Short summary
The N isotopic composition of nitrate (
This article is included in the Encyclopedia of Geosciences
nitrate δ15N) is a useful tracer of ocean N cycling and many other ocean processes. Here, we use a global compilation of marine nitrate δ15N as an input, training, and validating dataset for an artificial neural network (a.k.a.,
machine learning) and examine basin-scale trends in marine nitrate δ15N from the surface to the seafloor.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
This article is included in the Encyclopedia of Geosciences
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019, https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
This article is included in the Encyclopedia of Geosciences
Taylor S. Martin, François Primeau, and Karen L. Casciotti
Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, https://doi.org/10.5194/bg-16-347-2019, 2019
Short summary
Short summary
Nitrite is a key intermediate in many nitrogen (N) cycling processes in the ocean, particularly in areas with low oxygen that are hotspots for N loss. We have created a 3-D global N cycle model with nitrite as a tracer. Stable isotopes of N are also included in the model and we are able to model the isotope fractionation associated with each N cycling process. Our model accurately represents N concentrations and isotope distributions in the ocean.
This article is included in the Encyclopedia of Geosciences
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
This article is included in the Encyclopedia of Geosciences
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
This article is included in the Encyclopedia of Geosciences
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
This article is included in the Encyclopedia of Geosciences
Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin
Biogeosciences, 15, 6573–6589, https://doi.org/10.5194/bg-15-6573-2018, https://doi.org/10.5194/bg-15-6573-2018, 2018
Short summary
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
This article is included in the Encyclopedia of Geosciences
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
This article is included in the Encyclopedia of Geosciences
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
This article is included in the Encyclopedia of Geosciences
Akitomo Yamamoto, Ayako Abe-Ouchi, and Yasuhiro Yamanaka
Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, https://doi.org/10.5194/bg-15-4163-2018, 2018
Short summary
Short summary
Millennial-scale changes in oceanic CO2 uptake due to global warming are simulated by a GCM and offline biogeochemical model. Sensitivity studies show that decreases in oceanic CO2 uptake are mainly caused by a weaker biological pump and seawater warming. Enhanced CO2 uptake due to weaker equatorial upwelling cancels out reduced CO2 uptake due to weaker AMOC and AABW formation. Thus, circulation change plays only a small direct role in reduction of CO2 uptake due to global warming.
This article is included in the Encyclopedia of Geosciences
Cited articles
Acevedo-Trejos, E., Brandt, G., Bruggeman, J., and Merico, A.: Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean, Scient. Rep., 5, 8918, https://doi.org/10.1038/srep08918, 2015.
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Proceeding of the Second International Symposium on Information Theory, edited byL Petrov, B. N. and Caski, F., Akademiai Kiado, 267–281, 1973.
Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005.
Annan, J., Hargreaves, J., Edwards, N., and Marsh, R.: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter, Ocean Model., 8, 135–154, 2005.
Anning, T., MacIntyre, H. L., Pratt, S. M., Sammes, P. J., Gibb, S., and Geider, R. J.: Photoacclimation in the marine diatom Skeletonema costatum, Limnol. Oceanogr., 45, 1807–1817, 2000.
Arhonditsis, G. B. and Brett, M.: Evaluation of the current state of mechanistic aquatic biogeochemical modeling, Mar. Ecol. Prog. Ser., 271, 13–26, https://doi.org/10.3354/meps271013, 2004.
Arhonditsis, G. B., Papantou, D., Zhang, W., Perhar, G., Massos, E., and Shi, M.: Bayesian calibration of mechanistic aquatic biogeochemical models and benefits for environmental management, J. Mar. Syst., 73, 8–30, 2008.
Armi, L. and Flament, P.: Cautionary remarks on the spectral interpretation of turbulent flows, J. Geophys. Res.-Oceans, 90, 11779–11782, 1985.
Armstrong, R. A.: Optimality-based modeling of nitrogen allocation and photoacclimation in photosynthesis, Deep-Sea Res. Pt. II, 53, 513–531, 2006.
Armstrong, R. A.: Nutrient uptake rate as a function of cell size and surface transporter density: A Michaelis-like approximation to the model of Pasciak and Gavis, Deep-Sea Res. Pt. I, 55, 1311–1317, 2008.
Arrhenius, S.: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Z. Phys. Chem., 4, 96–116, 1889a.
Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Z. Phys. Chem., 4, 226–248, 1889b.
Askey, R. and Wilson, J. A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, in: vol. 54 of American Mathematical Society: Memoirs of the American Mathematical Society, American Mathematical Society, https://books.google.de/books?id=9q9o03nD_xsC (last access: April 2017), 1985.
Aumont, O., Ethe, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: ann ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Bacastow, R. and Maier-Reimer, E.: Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cy., 5, 71–85, 1991.
Baird, M. E. and Suthers, I. M.: A size-resolved pelagic ecosystem model, Ecol. Model., 203, 185–203, 2007.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Banas, N. S.: Adding complex trophic interactions to a size-spectral plankton model: Emergent diversity patterns and limits on predictability, Ecol. Model., 222, 2663–2675, 2011.
Baretta-Bekker, J. G., Riemann, B., Baretta, J. W., and Rasmussen, E. K.: Testing the microbial loop concept by comparing mesocosm data with results from a dynamical simulation-model, Mar. Ecol. Prog. Ser., 106, 187–198, 1994.
Baretta-Bekker, J. G., Baretta, J. W., Hansen, A. S., and Riemann, B.: An improved model of carbon and nutrient dynamics in the microbial food web in marine enclosures, Aquat. Microb. Ecol., 14, 91–108, 1998.
Baumert, H.: On the theory of photosynthesis and growth in phytoplankton. Part I: Light limitation and constant temperature, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 81, 109–139, 1996.
Bayes, T.: A letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, A.M.F.R.S., Philosophical Transactions (1683–1775), 269–271, 1763.
Bayes, T. and Price, R.: An Essay towards solving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S., Philosophical Transactions (1683–1775), 370–418, 1763.
Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Sci., 6, 247–262, https://doi.org/10.5194/os-6-247-2010, 2010.
Bennett, A. F.: Inverse modeling of the ocean and atmosphere, Cambridge University Press, Cambridge, 2002.
Berelson, W.: The flux of particulate organic carbon into the ocean interior: A comparison of four US JGOFS regional studies, Oceanography, 14, 59–67, 2001.
Bertino, L., Evensen, G., and Wackernagel, H.: Sequential data assimilation techniques in oceanography, Int. Stat. Rev., 71, 223–241, 2003.
Blackman, F. F.: Optima and limiting factors, Ann. Bot., 19, 281–295, 1905.
Bliznyuk, N., Ruppert, D., Shoemaker, C., Regis, R., Wild, S., and Mugunthan, P.: Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation, J. Comput. Graph. Stat., 17, 270–294, 2008.
Bocquet, M.: An introduction to inverse modelling and parameter estimation for atmosphere and ocean sciences, in: International Summer School – Advanced Data Assimilation for Geosciences, edited by: Blayo, E., Bocquet, M., Cosme, E., and Cugliandolo, L. F., Oxford University Press, Oxford, p. 608, 2014.
Box, G. E. and Cox, D. R.: An analysis of transformations, J. Roy. Stat. Soc. Ser. B, 26, 211–252, 1964.
Brasseur, P., Bahurel, P., Bertino, L., Birol, F., Brankart, J.-M., Ferry, N., Losa, S., Rémy, E., Schröter, J., Skachko, S., Testut, C.-E., Tranchant, B., Van Leeuwen, P. J., and Verron, J.: Data assimilation for marine monitoring and prediction: the MERCATOR operational assimilation systems and the MERSEA developments, Q. J. Roy. Meteorol. Soc., 131, 3561–3582, 2005.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.: Toward a metabolic theory of ecology, Ecology, 85, 1771–1789, 2004.
Bruggeman, J.: A phylogenetic approach to the estimation of phytoplankton traits, J. Phycol., 47, 52–65, 2011.
Bruggeman, J. and Kooijman, S. A. L. M.: A biodiversity-inspired approach to aquatic ecosystem modeling, Limnol. Oceanogr., 52, 1533–1544, 2007.
Bruggeman, J., Heringa, J., and Brandt, B. W.: PhyloPars: estimation of missing parameter values using phylogeny, Nucl. Acids Res., 37, W179–W184, 2009.
Brun, R., Reichert, P., and Künsch, H. R.: Practical identifiability analysis of large environmental simulation models, Water Resour. Res., 37, 1015–1030, 2001.
Buesseler, K.: Do upper-ocean sediment traps provide an accurate record of particle flux?, Nature, 353, 420–423, 1991.
Buesseler, K., Lamborg, C., Boyd, P., Lam, P., Trull, T., Bidigare, R., Bishop, J., Casciotti, K., Dehairs, F., Elskens, M., Honda, M., Karl, D., Siegel, D., Silver, M., Steinberg, D., Valdes, J., Mooy, B. V., and Wilson, S.: Revisiting carbon flux through the ocean's twilight zone, Science, 316, 567–570, https://doi.org/10.1126/science.1137959, 2007.
Buitenhuis, E. T., Le Quéré, C., Aumont, O., Beaugrand, G., Bunker, A., Hirst, A., Ikeda, T., O'Brien, T., Piontkovski, S., and Straile, D.: Biogeochemical fluxes through mesozooplankton, Global Biogeochem. Cy., 20, GB2003, https://doi.org/10.1029/2005GB002511, 2006.
Buitenhuis, E. T., Rivkin, R. B., Sailley, S., and Le Quéré, C.: Biogeochemical fluxes through microzooplankton, Global Biogeochem. Cy., 24, GB4015, https://doi.org/10.1029/2009GB003601, 2010.
Burd, A. B. and Jackson, G. A.: Particle aggregation, Annu. Rev. Mar. Sci., 1, 65–90, 2009.
Burmaster, D. E.: The continuous culture of phytoplankton: mathematical equivalence among three steady-state models, Am. Nat., 113, 123–134, https://doi.org/10.1086/283368, 1979.
Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a practical information-theoretic approach, Springer Science & Business Media, 2002.
Burnham, K. P. and Anderson, D. R.: Multimodel inference understanding AIC and BIC in model selection, Sociol. Meth. Res., 33, 261–304, 2004.
Cabre, A., Marinov, I., Bernadello, R., and Bianchi, D.: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015.
Cao, X. and Spall, J.: Comparison of Expected and Observed Fisher Information in Variance Calculations for Parameter Estimates, Johns Hopkins APL technical digest, 28, 294, 2010.
Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Aitac, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Quéré, C. L., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Castelletti, A., Galelli, S., Ratto, M., Soncini-Sessa, R., and Young, P.: A general framework for dynamic emulation modelling in environmental problems, Environ. Model. Softw., 34, 5–18, 2012.
Ciavatta, S., Torres, R., Saux-Picart, S., and Allen, J. I.: Can ocean color assimilation improve biogeochemical hindcasts in shelf seas?, J. Geophys. Res.-Oceans, 116, C1204, https://doi.org/10.1029/2011JC007219, 2011.
Cocco, V., Joos, F., Steinacher, M., Frölicher, T., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013.
Conn, A. R., Gould, N. I. M., and Toint, P. L.: Trust-region methods, MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2000.
Conti, S. and O'Hagan, A.: Bayesian emulation of complex multi-output and dynamic computer models, J. Stat. Plan. Infer., 140, 640–651, 2010.
Conti, S., Gosling, J. P., Oakley, J. E., and O'hagan, A.: Gaussian process emulation of dynamic computer codes, Biometrika, 96, 663–676, https://doi.org/10.1093/biomet/asp02, 2009.
Côté, B. and Platt, T.: Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton, Limnol. Oceanogr., 28, 320–344, 1983.
Cox, D. R.: Frequentist and Bayesian statistics: A critique, in: Statistical Problems in Particle Physics, Astrophysics and Cosmology (PHYSTAT 05): Proceedings, 12–15 September 2005, Oxford, UK, 3–6, Imperial College Press, UK, http://www.physics.ox.ac.uk/phystat05/proceedings/files//papbayesrev.pdf (last access: April 2017), 2005.
Cox, D. R. and Hinkley, D. V.: Theoretical Statistics, Chapman and Hall/CRC Press, 1974.
Craig, P., Goldstein, M., Seheult, A., and Smith, J.: Bayes linear strategies for matching hydrocarbon reservoir history, in: Bayesian statistics 5: Proceedings of the Fifth Valencia International Meeting, 5–9 June 1994, edited by: Bernardo, J., Berger, J., Dawid, A., and Smith, A., Oxford University Press, Oxford, 69–95, 1996.
Crout, N. M., Tarsitano, D., and Wood, A. T.: Is my model too complex? Evaluating model formulation using model reduction, Environ. Model. Softw., 24, 1–7, 2009.
Cullen, J. J., Yang, X., and MacIntyre, H. L.: Nutrient limitation of marine photosynthesis, in: Primary Productivity and Biogeochemical Cycles in the Sea, vol. 43 of Environmental Science Research, edited by: Falkowski, P., Woodhead, A., and Vivirito, K., Springer Science + Business Media, New York, 69–88, 1992.
Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G., Frankignoulle, M., Borges, A. V., Riebesell, U., and Gattuso, J.-P.: Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cy., 19, GB2023, https://doi.org/10.1029/2004GB002318, 2005.
Denman, K.: Modelling planktonic ecosystems: parameterizing complexity, Prog. Oceanogr., 57, 429–452, https://doi.org/10.1016/S0079-6611(03)00109-5, 2003.
Doney, S. C., Glover, D. M., and Najjar, R. G.: A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site, Deep-Sea Res. Pt. II, 43, 591–624, 1996.
Doron, M., Brasseur, P., Brankart, J.-M., Losa, S. N., and Melet, A.: Stochastic estimation of biogeochemical parameters from Globcolour ocean colour satellite data in a North Atlantic 3D ocean coupled physical–biogeochemical model, J. Mar. Syst., 117, 81–95, 2013.
Dowd, M.: A sequential Monte Carlo approach for marine ecological prediction, Environmetrics, 17, 435–455, 2006.
Dowd, M.: Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo, J. Mar. Syst., 68, 439–456, 2007.
Dowd, M.: Estimating parameters for a stochastic dynamic marine ecological system, Environmetrics, 22, 501–515, 2011.
Dowd, M. and Meyer, R.: A Bayesian approach to the ecosystem inverse problem, Ecol. Model., 168, 39–55, https://doi.org/10.1016/S0304-3800(03)00186-8, 2003.
Dowd, M., Jones, E., and Parslow, J.: A statistical overview and perspectives on data assimilation for marine biogeochemical models, Environmetrics, 25, 203–213, 2014.
Droop, M.: 25 Years of Algal Growth Kinetics A Personal View, Botanica Marina, 26, 99–112, 1983.
Dutkiewicz, S., Follows, M. J., and Bragg, J. G.: Modeling the coupling of ocean ecology and biogeochemistry, Global Biogeochem. Cy., 23, GB4017, https://doi.org/10.1029/2008GB003405, 2009.
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.: Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton, Limnol. Oceanogr., 57, 554–566, 2012.
Efron, B.: Bootstrap confidence intervals for a class of parametric problems, Biometrika, 72, 45–58, 1985.
Efron, B.: Why isn't everyone a Bayesian?, Am. Stat., 0, 1–5, 1986.
Efron, B. and Hinkley, D. V.: Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information, Biometrika, 65, 457–483, 1978.
Efron, B. and Tibshirani, R.: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci., 1, 54–75, 1986.
El Jarbi, M., Rückelt, J., Slawig, T., and Oschlies, A.: Reducing the model-data misfit in a marine ecosystem model using periodic parameters and linear quadratic optimal control, Biogeosciences, 10, 1169–1182, https://doi.org/10.5194/bg-10-1169-2013, 2013.
Emerson, S.: Annual net community production and the biological carbon flux in the ocean, Global Biogeochem. Cy., 28, 14–28, 2014.
Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J.-P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M.-D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A., and Riebesell, U.: Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments, Limnol. Oceanogr., 50, 493–507, 2005.
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063–1085, 1972.
Eppley, R. W., Rogers, J. N., and McCarthy, J. J.: Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton, Limnol. Oceanogr., 14, 912–920, 1969.
Evans, G. T.: A framework for discussing seasonal succession and coexistence of phytoplankton species, Limnol. Oceanogr., 33, 1027–1036, 1988.
Evans, G. T.: Defining misfit between biogeochemical models and data sets, J. Ma. Syst., 40, 49–54, 2003.
Evans, G. T. and Parslow, J. S.: A model of annual plankton cycles, Biol. Oceanogr., 3, 327–347, 1985.
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003.
Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Syst., 29, 83–104, 2009.
Falkowski, P. G.: Nitrate uptake in marine phytoplankton: Comparison of half-saturation constants from seven species1, Limnol. Oceanogr., 20, 412–417, 1975.
Fan, W. and Lv, X.: Data assimilation in a simple marine ecosystem model based on spatial biological parameterizations, Ecol. Model., 220, 1997–2008, 2009.
Fasham, M. J. R. and Evans, G. T.: The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station 47 Deg N 20 Deg W, Philos. T. Roy. Soc. A, 348, 203–209, 1995.
Fasham, M. J. R., Ducklow, H., and McKelvie, S.: A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48, 591–639, 1990.
Faugeras, B., Lévy, M., Mémery, L., Verron, J., Blum, J., and Charpentier, I.: Can biogeochemical fluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in the Northwestern Mediterranean Sea at the JGOFS-DYFAMED station, J. Mar. Syst., 40–41, 99–125, https://doi.org/10.1016/S0924-7963(03)00015-0, 2003.
Faure, C. and Papegay, Y.: Odyssée Version 1.6, the language reference manual, Rapport Technique, Tech. rep., Unité de recherche INRIA, Sophia, Antipolis, France, 1997.
Fennel, K., Losch, M., Schroter, J., and Wenzel, M.: Testing a marine ecosystem model: sensitivity analysis and parameter optimization, J. Mar. Syst., 28, 45–63, 2001.
Fiechter, J., Herbei, R., Leeds, W., Brown, J., Milliff, R., Wikle, C., Moore, A., and Powell, T.: A Bayesian parameter estimation method applied to a marine ecosystem model for the coastal Gulf of Alaska, Ecol. Model., 258, 122–133, 2013.
Fiksen, Ø., Follows, M. J., and Aksnes, D. L.: Trait-based models of nutrient uptake in microbes extend the Michaelis–Menten framework, Limnol. Oceanogr., 58, 193–202, 2013.
Fisher, R. A.: On the mathematical foundations of theoretical statistics, Philos. T. Roy. Soc. Lond. A, 222, 309–368, https://doi.org/10.1098/rsta.1922.0009, 1922.
Fisher, R. A.: Two new properties of mathematical likelihood, P. Roy. Soc. Lond. A, 144, 285–307, 1934.
Fletcher, S.: Mixed Gaussian-lognormal four-dimensional data assimilation, Tellus A, 62, 266–287, 2010.
Flynn, K. J.: Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism, Prog. Oceanogr., 56, 249–279, 2003.
Flynn, K. J.: Ecological modelling in a sea of variable stoichiometry: dysfunctionality and the legacy of Redfield and Monod, Prog. Oceanogr., 84, 52–65, 2010.
Flynn, K. J., Davidson, K., and Leftley, J.: Carbon-nitrogen relations at whole-cell and free-amino-acid levels during batch growth of Isochrysis galbana (Prymnesiophyceae) under conditions of alternating light and dark, Mar. Biol., 118, 229–237, 1994.
Flynn, K. J., Marshall, H., and Geider, R. J.: A comparison of two N-irradiance interaction models of phytoplankton growth, Limnol. Oceanogr., 46, 1794–1802, 2001.
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent biogeography of microbial communities in a model ocean, Science, 315, 1843–1846, 2007.
Franks, P. J. S.: NPZ models of plankton dynamics: their construction, coupling to physics, and application, J. Oceanogr., 58, 379–387, 2002.
Franks, P. J. S.: Plankton patchiness, turbulent transport and spatial spectra, Mar. Ecol. Prog. Ser., 294, 295–309, 2005.
Franks, P. J. S.: Planktonic ecosystem models: perplexing parameterizations and a failure to fail, J. Plankton Res., 31, 1299–1306, https://doi.org/10.1093/plankt/fbp069, 2009.
Freeman, J. and Modarres, R.: Inverse Box–Cox: the power-normal distribution, Stat. Probab. Lett., 76, 764–772, 2006.
Friedrichs, M. A. M.: A data assimilative marine ecosystem model of the central Equatorial Pacific: Numerical twin experiments, J. Mar. Res., 59, 859–894, 2001.
Friedrichs, M. A. M.: Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the central equatorial Pacific Ocean, Deep-Sea Res. Pt. II, 49, 289–319, 2002.
Friedrichs, M. A. M., Hood, R. R., and Wiggert, J. D.: Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data, Deep-Sea Res. Pt. II, 53, 576–600, https://doi.org/10.1016/j.dsr2.2006.01.026, 2006.
Friedrichs, M. A. M., Dusenberry, J. A., Anderson, L. A., Armstrong, R. A., Chai, F., Christian, J. R., Doney, S. C., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D. J., Moore, J. K., Schartau, M., Spitz, Y. H., and Wiggert, J. D.: Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups, J. Geophys. Res., 112, C08001, https://doi.org/10.1029/2006JC003852, 2007.
Frigstad, H., Henson, S. A., Hartman, S. E., Omar, A. M., Jeansson, E., Cole, H., Pebody, C., and Lampitt, R. S.: Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory, Biogeosciences, 12, 5885–5897, https://doi.org/10.5194/bg-12-5885-2015, 2015.
Fulton, E. A., Smith, A. D. M., and Johnson, C. R.: Effect of complexity on marine ecosystem models, Mar. Ecol. Prog. Ser. 253, 1–16, https://doi.org/10.3354/meps253001, 2003.
Garcia-Gorriz, E., Hoepffner, N., and Ouberdous, M.: Assimilation of SeaWiFS data in a coupled physical–biological model of the Adriatic Sea, J. Mar.Syst., 40, 233–252, 2003.
Gardner, W.: Sediment trap sampling in surface waters: issues and recommendations, in: The Changing Ocean Carbon Cycle, Cambridge University Press, Cambridge, 240–284, 2000.
Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O.: Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model, Biogeosciences, 3, 521–537, https://doi.org/10.5194/bg-3-521-2006, 2006.
Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679–694, 1998.
Gentleman, W., Leising, A., Frost, B., Strom, S., and Murray, J.: Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics, Deep-Sea Res. Pt. II, 50, 2847–2875, https://doi.org/10.1016/j.dsr2.2003.07.001, 2003.
Giering, R. and Kaminski, T.: Recipes for adjoint code construction, ACM T. Math. Softw., 24, 437–474, 1998.
Gregg, W. W., Friedrichs, A. M., Robinson, A. R., Rose, K. A., Schlitzer, R., Thompson, K. R., and Doney, S. C.: Skill assessment in ocean biological data assimilation, J. Mar. Syst., 76, 16–33, https://doi.org/10.1016/j.jmarsys.2008.05.006, 2009.
Griewank, A.: On automatic differentiation, Math. Program., 6, 83–107, 1989.
Griewank, A.: A mathematical view of automatic differentiation, Acta Numerica, 12, 321–398, 2003.
Guieu, C., Dulac, F., Ridame, C., and Pondaven, P.: Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem, Biogeosciences, 11, 425–442, https://doi.org/10.5194/bg-11-425-2014, 2014.
Gunson, J., Oschlies, A., and Garçon, V.: Sensitivity of ecosystem parameters to simulated satellite ocean color data using a coupled physical-biological model of the North Atlantic, J. Mar. Res., 57, 613–639, https://doi.org/10.1357/002224099321549611, 1999.
Hald, A.: On the history of maximum likelihood in relation to inverse probability and least squares, Stat. Sci., 14, 214–222, 1999.
Harmon, R. and Challenor, P.: A Markov chain Monte Carlo method for estimation and assimilation into models, Ecol. Model., 101, 41–59, 1997.
Hastie, T., Tibshirani, R., and Friedman, J.: Unsupervised learning, in: The elements of statistical learning, Springer Science + Business Media, New York, 485–585, https://doi.org/10.1007/b94608, 2009.
Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97–109, 1970.
Healey, F. P.: Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (cyanophyceae) 1, J. Phycol., 21, 134–146, 1985.
Heath, M. R.: Ecosystem limits to food web fluxes and fisheries yields in the North Sea simulated with an end-to-end food web model, Prog. Oceanogr., 102, 42–66, 2012.
Heimbach, P., Wunsch, C., Ponte, R. M., Forget, G., Hill, C., and Utke, J.: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design, Deep-Sea Res. Pt. II, 58, 1858–1879, 2011.
Hemmings, J. C. and Challenor, P. G.: Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha), Geosci. Model Dev., 5, 471–498, https://doi.org/10.5194/gmd-5-471-2012, 2012.
Hemmings, J. C., Srokosz, M. A., Challenor, P., and Fasham, M. J.: Assimilating satellite ocean-colour observations into oceanic ecosystem models, Philos. T. Roy. Soc. Lond. A, 361, 33–39, 2003.
Hemmings, J. C., Srokosz, M. A., Challenor, P., and Fasham, M. J.: Split-domain calibration of an ecosystem model using satellite ocean colour data, J. Mar. Syst., 50, 141–179, 2004.
Hemmings, J. C., Challenor, P. G., and Yool, A.: Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1), Geosci. Model Dev., 8, 697–731, https://doi.org/10.5194/gmd-8-697-2015, 2015.
Higdon, D., Gattiker, J., Williams, B., and Rightley, M.: Computer model calibration using high-dimensional output, J. Am. Stat. Assoc., 103, 570–583, https://doi.org/10.1198/016214507000000888, 2008.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hoffman, R. N., Liu, Z., Louis, J.-F., and Grassoti, C.: Distortion representation of forecast errors, Mon. Weather Rev., 123, 2758–2770, 1995.
Hooten, M. B., Leeds, W. B., Fiechter, J., and Wikle, C. K.: Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models, J. Agr. Biol. Environ. Stat., 16, 475–494, 2011.
Huisman, J. and Weissing, F. J.: Biodiversity of plankton by species oscillations and chaos, Nature, 402, 407–410, 1999.
Huret, M., Gohin, F., Delmas, D., Lunven, M., and Garçon, V.: Use of SeaWiFS data for light availability and parameter estimation of a phytoplankton production model of the Bay of Biscay, J. Mar. Syst., 65, 509–531, 2007.
Hurtt, G. C. and Armstrong, R. A.: A pelagic ecosystem model calibrated with BATS data, Deep-Sea Res. Pt. II, 43, 653–683, 1996.
Hurtt, G. C. and Armstrong, R. A.: A pelagic ecosystem model calibrated with BATS and OWSI data, Deep-Sea Res. Pt. I, 46, 27–61, 1999.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth System Model in different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5, 287–315, 2013.
IPCC: Synthesis report, in: Contributions of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 2014.
Jackson, G. A.: A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Res. Pt. A, 37, 1197–1211, 1990.
Jassby, A. D. and Platt, T.: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21, 540–547, 1976.
Jazwinski, A. H.: Stochastic Processes and Filtering Theory, Dover Publications, Inc., Mineola, New York, 2007.
Joassin, P., Delille, B., Soetaert, K., Harlay, J., Borges, A. V., Chou, L., Riebesell, U., Suykens, K., and Grégoire, M.: Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment, J. Mar. Syst., 85, 71–85, 2011.
Johnson, J. B. and Omland, K. S.: Model selection in ecology and evolution, Trends Ecol. Evol., 19, 101–108, 2004.
Jones, E., Parslow, J., and Murray, L.: A Bayesian approach to state and parameter estimation in a Phytoplankton-Zooplankton model, Aust. Meteorol. Oceanogr. J., 59, 7–16, 2010.
Kane, A., Moulin, C., Thiria, S., Bopp, L., Berrada, M., Tagliabue, A., Crépon, M., Aumont, O., and Badran, F.: Improving the parameters of a global ocean biogeochemical model via variational assimilation of in situ data at five time series stations, J. Geophys. Res.-Oceans, 116, C06011, https://doi.org/10.1029/2009JC006005, 2011.
Kasibhatla, P.: Inverse methods in global biogeochemical cycles, vol. 114, American Geophysical Union, Washington, D.C., 324 pp., 2000.
Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, https://doi.org/10.1029/2005WR004368, 2006.
Kennedy, M. C. and O'Hagan, A.: Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1–13, 2000.
Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of computer models, J. Roy. Stat. Soc. Ser. B, 63, 425–464, 2001.
Khatiwala, S.: A computational framework for simulation of biogeochemical tracers in the ocean, Global Biogeochem. Cy., 21, GB3001, https://doi.org/10.1029/2007GB002923, 2007.
Khatiwala, S.: Fast spin up of ocean biogeochemical models using matrix-free Newton–Krylov, Ocean Model., 23, 121–129, 2008.
Kidston, M., Matear, R., and Baird, M. E.: Parameter optimisation of a marine ecosystem model at two contrasting stations in the Sub-Antarctic Zone, Deep-Sea Res. Pt. II, 58, 2301–2315, 2011.
Klausmeier, C. A. and Litchman, E.: Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46, 1998–2007, 2001.
Kooijman, S.: Population dynamics on basis of budgets, in: The dynamics of physiologically structured populations, vol. 68, Springer, Berlin, 266–297, 1986.
Kreus, M. and Schartau, M.: Variations in the elemental ratio of organic matter in the central Baltic Sea: Part II – Sensitivities of annual mass flux estimates to model parameter variations, Cont. Shelf Res., 100, 46–63, 2015.
Kriest, I. and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles, Biogeosciences, 5, 55–72, https://doi.org/10.5194/bg-5-55-2008, 2008.
Kriest, I. and Oschlies, A.: Swept under the carpet: organic matter burial decreases global ocean biogeochemical model sensitivity to remineralization length scale, Biogeosciences, 10, 8401–8422, https://doi.org/10.5194/bg-10-8401-2013, 2013.
Kriest, I. and Oschlies, A.: MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes, Geosci. Model Dev., 8, 2929–2957, https://doi.org/10.5194/gmd-8-2929-2015, 2015.
Kriest, I., Khatiwala, S., and Oschlies, A.: Towards an assessment of simple global marine biogeochemical models of different complexity, Prog. Oceanogr., 86, 337–360, https://doi.org/10.1016/j.pocean.2010.05.002, 2010.
Kriest, I., Oschlies, A., and Khatiwala, S.: Sensitivity analysis of simple global marine biogeochemical models, Global Biogeochem. Cy., 26, GB2029, https://doi.org/10.1029/2011GB004072, 2012.
Kriest, I., Sauerland, V., Khatiwala, S., Srivastav, A., and Oschlies, A.: Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0), Geosci. Model Dev., 10, 127–154, https://doi.org/10.5194/gmd-10-127-2017, 2017.
Kuczera, G.: Assessing hydrologic model nonlinearity using response surface plots, J. Hydrol., 118, 143–161, 1990.
Kuhn, A. M., Fennel, K., and Mattern, J. P.: Model investigations of the North Atlantic spring bloom initiation, Prog. Oceanogr., 138, 176–193, 2015.
Kwon, E. Y. and Primeau, F.: Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data, Global Biogeochem. Cy., 20, GB4009, https://doi.org/10.1029/2005GB002631, 2006.
Kwon, E. Y. and Primeau, F.: Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data, J. Geophys. Res.-Oceans, 113, C08011, https://doi.org/10.1029/2007JC004520, 2008.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of remineralization depth on the air–sea carbon balance, Nat. Geosci., 2, 630–635, 2009.
Laws, E. A. and Bannister, T.: Nutrient-and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean, Limnol. Oceanogr., 25, 457–473, 1980.
Laws, E. A., Redalje, D. G., Karl, D. M., and Chalup, M. S.: A theoretical and experimental examination of the predictions of two recent models of phytoplankton growth, J. Theor. Biol., 105, 469–491, 1983.
Lawson, L. M., Spitz, Y. H., Hofmann, E. E., and Long, R. B.: A data assimilation technique applied to a predator-prey model, Bull. Math. Biol., 57, 593–617, 1995.
Lawson, L. M., Hofmann, E. E., and Spitz, Y. H.: Time series sampling and data assimilation in a simple marine ecosystem model, Deep-Sea Res. Pt. II, 43, 625–651, https://doi.org/10.1016/0967-0645(95)00096-8, 1996.
Lawson, W. G. and Hansen, J. A.: Alignment error models and ensemble-based data assimilation, Mon. Weather Rev., 133, 1687–1709, 2005.
Le Dimet, F.-X. and Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, 38, 97–110, 1986.
Leeds, W. B., Wikle, C. K., Fiechter, J., Brown, J., and Milliff, R. F.: Modeling 3-D spatio-temporal biogeochemical processes with a forest of 1-D statistical emulators, Environmetrics, 24, 1–12, 2013.
Leeds, W. B., Wikle, C., and Fiechter, J.: Emulator-assisted reduced-rank ecological data assimilation for nonlinear multivariate dynamical spatio-temporal processes, Stat. Methodol., 17, 126–138, 2014.
Lele, S. R. and Dennis, B.: Bayesian methods for hierarchical models: are ecologists making a Faustian bargain, Ecol. Appl., 19, 581–584, 2009.
Le Queré, C.: Reply to Horizons Article `Plankton functional type modelling: running before we can walk' Anderson (2005): I. Abrupt changes in marine ecosystems?, J. Plankton Res., 28, 871–872, 2006.
Lewis, F., Butler, A., and Gilbert, L.: A unified approach to model selection using the likelihood ratio test, Meth. Ecol. Evol., 2, 155–162, https://doi.org/10.1111/j.2041-210X.2010.00063.x, 2011.
Li, X. and Primeau, F. W.: A fast Newton–Krylov solver for seasonally varying global ocean biogeochemistry models, Ocean Model., 23, 13–20, https://doi.org/10.1016/j.ocemod.2008.03.001, 2008.
Li, X., McGillicuddy, D. J., Durbin, E. G., and Wiebe, P. H.: Biological control of the vernal population increase of Calanus finmarchicus on Georges Bank, Deep-Sea Res. Pt. II, 53, 2632–2655, 2006.
Li, X., Wang, C., Fan, W., and Lv, X.: Optimization of the Spatiotemporal Parameters in a Dynamical Marine Ecosystem Model Based on the Adjoint Assimilation, Math. Probl. Eng., 2013, 373540, https://doi.org/10.1155/2013/373540, 2013.
Lignell, R., Haario, H., Laine, M., and Thingstad, T. F.: Getting the “right” parameter values for models of the pelagic microbial food web, Limnol. Oceanogr., 58, 301–313, 2013.
Link, W. A. and Barker, R. J.: Model weights and the foundations of multimodel inference, Ecology, 87, 2626–2635, 2006.
Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski, P. G.: The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level, Ecol. Lett., 10, 1170–1181, 2007.
Litchman, E., Edwards, K. F., Klausmeier, C. A., and Thomas, M. K.: Phytoplankton niches, traits and eco-evolutionary responses to global environmental change, Mar. Ecol. Prog. Ser., 470, 235–248, 2012.
Liu, F. and West, M.: A dynamic modelling strategy for Bayesian computer model emulation, Bayesian Anal., 4, 393–411, 2009.
Longhurst, A. R.: Seasonal cycles of pelagic production and consumption, Prog. Oceanogr., 36, 77–167, 1995.
Longhurst, A. R.: Ecological Geography of the Sea, Academic Press, San Diego, 1998.
Löptien, U. and Dietze, H.: Constraining parameters in state-of-the-art marine pelagic ecosystem models–is it actually feasible with typical observations of standing stocks?, Ocean Sci., 11, 573–590, https://doi.org/10.5194/os-11-573-2015, 2015.
Löptien, U. and Meier, H. M.: The influence of increasing water turbidity on the sea surface temperature in the Baltic Sea: A model sensitivity study, J. Mar. Syst., 88, 323–331, 2011.
Löptien, U., Eden, C., Timmermann, A., and Dietze, H.: Effects of biologically induced differential heating in an eddy-permitting coupled ocean-ecosystem model, J. Geophys. Res.-Oceans, 114, C06011, https://doi.org/10.1029/2008JC004936, 2009.
Losa, S. N., Kivman, G. A., Schröter, J., and Wenzel, M.: Sequential weak constraint parameter estimation in an ecosystem model, J. Mar. Syst., 43, 31–49, 2003.
Losa, S. N., Kivman, G. A., and Ryabchenko, V. A.: Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data?, J. Mar. Syst., 45, 1–20, 2004.
Losa, S. N., Vézina, A., Wright, D., Lu, Y., Thompson, K., and Dowd, M.: 3D ecosystem modelling in the North Atlantic: Relative impacts of physical and biological parameterizations, J. Mar. Syst., 61, 230–245, 2006.
Lucia, D. J., Beran, P. S., and Silva, W. A.: Reduced-order modeling: new approaches for computational physics, Prog. Aerosp. Sci., 40, 51–117, 2004.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions, Global Biogeochem. Cy., 7, 645–677, 1993.
Malve, O., Laine, M., Haario, H., Kirkkala, T., and Sarvala, J.: Bayesian modelling of algal mass occurrences – using adaptive MCMC methods with a lake water quality model, Environ. Model. Softw., 22, 966–977, 2007.
Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., and Lee, T.: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity, J. Geophys. Res., 104, 529–548, 1999.
Marsili-Libelli, S., Guerrizio, S., and Checchi, N.: Confidence regions of estimated parameters for ecological systems, Ecol. Model., 165, 127–146, 2003.
Martin, A.: Phytoplankton patchiness: the role of lateral stirring and mixing, Prog. Oceanogr., 57, 125–174, 2003.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. A, 34, 267–285, 1987.
Matear, R. J.: Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at Station P, J. Mar. Res., 53, 571–607, https://doi.org/10.1357/0022240953213098, 1995.
Matear, R. J. and Jones, E.: Marine biogeochemical modelling and data assimilation, in: Operational Oceanography in the 21st Century, edited by: Schiller, A. and Brassington, G. B., Springer, New York, 295–317, 2011.
Mattern, J. P. and Edwards, C. A.: Simple parameter estimation for complex models – Testing evolutionary techniques on 3-dimensional biogeochemical ocean models, J. Mar. Syst., 165, 139–152, 2017.
Mattern, J. P., Fennel, K., and Dowd, M.: Estimating time-dependent parameters for a biological ocean model using an emulator approach, J. Mar. Syst., 96, 32–47, 2012.
Mattern, J. P., Dowd, M., and Fennel, K.: Particle filter-based data assimilation for a three-dimensional biological ocean model and satellite observations, J. Geophys. Res.-Oceans, 118, 2746–2760, 2013a.
Mattern, J. P., Fennel, K., and Dowd, M.: Sensitivity and uncertainty analysis of model hypoxia estimates for the Texas-Louisiana shelf, J. Geophys. Res.-Oceans, 118, 1316–1332, 2013b.
Mattern, J. P., Fennel, K., and Dowd, M.: Periodic time-dependent parameters improving forecasting abilities of biological ocean models, Geophys. Res. Lett., 41, 6848–6854, 2014.
McDonald, C. P. and Urban, N. R.: Using a model selection criterion to identify appropriate complexity in aquatic biogeochemical models, Ecol. Model., 221, 428–432, 2010.
Meeker, W. Q. and Escobar, L. A.: Teaching about approximate confidence regions based on maximum likelihood estimation, Am. Stat., 49, 48–53, 1995.
Melbourne-Thomas, J., Wotherspoon, S., Corney, S., Molina-Balari, E., Marini, O., and Constable, A.: Optimal control and system limitation in a Southern Ocean ecosystem model, Deep-Sea Res. Pt. II, 114, 64–73, 2015.
Merico, A., Bruggeman, J., and Wirtz, K.: A trait-based approach for downscaling complexity in plankton ecosystem models, Ecol. Model., 220, 3001–3010, 2009.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092, 1953.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing, X.: Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation, Global Biogeochem. Cy., 28, 856–876, 2014.
Mittermaier, M. P.: Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles, Q. J. Roy. Meteorol. Soc., 133, 1487–1500, 2007.
Monod, J.: Recherches sur la croissance des cultures bacteriennes, PhD Thesis, Hermann, Paris, 1942.
Monod, J.: The growth of bacterial cultures, Annu. Rev. Microb., 3, 371–394, https://doi.org/10.1146/annurev.mi.03.100149.002103, 1949.
Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., and Busalacchi, A. J.: Effects of penetrative radiation on the upper tropical ocean circulation, J. Climate, 15, 470–486, 2002.
Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K., Doney, S. C., Dutay, J.-C., Follows, M., Gruber, N., Joos, F., Lindsay, K., Maier-Reimer, E., Matear, R., Matsumoto, K., Monfray, P., Mouchet, A., Orr, J. C., Plattner, G.-K., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Impact of circulation on export production, dissolved organic matter and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2), Global Biogeochem. Cy., 21, GB3007, https://doi.org/10.1029/2006GB002857, 2007.
Natvik, L.-J. and Evensen, G.: Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 1. Data assimilation experiments, J. Mar. Syst., 40, 127–153, 2003.
Nerger, L. and Gregg, W. W.: Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter, J. Mar. Syst., 73, 87–102, 2008.
Nevison, C., Manizza, M., Keeling, R., Kahru, M., Bopp, L., Dunne, J., Tiputra, J., Ilyina, T., and Mitchell, B.: Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data, Biogeosciences, 12, 193–208, https://doi.org/10.5194/bg-12-193-2015, 2015.
O'Hagan, A.: Bayesian analysis of computer code outputs: a tutorial, Reliabil. Eng. Syst. Safe., 91, 1290–1300, 2006.
Omlin, M. and Reichert, P.: A comparison of techniques for the estimation of model prediction uncertainty, Ecol. Model., 115, 45–59, 1999.
Omlin, M., Reichert, P., and Forster, R.: Biogeochemical model of Lake Zürich: model equations and results, Ecol. Model., 141, 77–103, 2001.
Oschlies, A.: Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model, J. Geophys. Res.-Oceans, 109, C12031, https://doi.org/10.1029/2004JC002430, 2004.
Oschlies, A. and Garçon, V.: An eddy-permitting coupled physical-biological model of the North Atlantic: 1. Sensitivity to advection numerics and mixed layer physics, Global Biogeochem. Cy., 13, 135–160, 1999.
Oschlies, A. and Schartau, M.: Basin-scale performance of a locally optimized marine ecosystem model, J. Mar. Res., 63, 335–358, 2005.
Pahlow, M.: Linking chlorophyll-nutrient dynamics to the Redfield N : C ratio with a model of optimal phytoplankton growth, Mar. Ecol. Prog. Ser., 287, 33–43, 2005.
Pahlow, M. and Oschlies, A.: Chain model of phytoplankton P, N and light colimitation, Mar. Ecol. Prog. Ser., 376, 69–83, https://doi.org/10.3354/meps07748, 2009.
Pahlow, M. and Oschlies, A.: Optimal allocation backs Droop's cell-quota model, Mar. Ecol. Prog. Ser., 473, 1–5, 2013.
Pahlow, M., Vézina, A. F., Casault, B., Maass, H., Malloch, L., Wright, D. G., and Lu, Y.: Adaptive model of plankton dynamics for the North Atlantic, Prog. Oceanogr., 76, 151–191, 2008.
Parekh, P., Follows, M. J., and Boyle, E. A.: Decoupling of iron and phosphate in the global ocean, Global Biogeochem. Cy., 19, GB2020, https://doi.org/10.1029/2004GB002280, 2005.
Parslow, J., Cressie, N., Campbell, E. P., Jones, E., and Murray, L.: Bayesian learning and predictability in a stochastic nonlinear dynamical model, Ecol. Appl., 23, 679–698, 2013.
Pelc, J. S., Simon, E., Bertino, L., El Serafy, G., and Heemink, A. W.: Application of model reduced 4D-Var to a 1D ecosystem model, Ocean Model., 57, 43–58, 2012.
Peterson, D., Perry, M., Bencala, K., and Talbot, M.: Phytoplankton productivity in relation to light intensity: a simple equation, Estuar. Coast. Shelf Sci., 24, 813–832, 1987.
Phillips, J. R.: Projection-based approaches for model reduction of weakly nonlinear, time-varying systems, IEEE T. Comput.-Aid. Design Integrat. Circ. Syst., 22, 171–187, 2003.
Piwonski, J. and Slawig, T.: Metos3D: the Marine Ecosystem Toolkit for Optimization and Simulation in 3-D – Part 1: Simulation Package v0.3.2, Geosci. Model Dev., 9, 3729–3750, https://doi.org/10.5194/gmd-9-3729-2016, 2016.
Platt, T. and Jassby, A. D.: The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton, J. Phycol., 12, 421–430, 1976.
Platt, T., Caverhill, C., and Sathyendranath, S.: Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic, J. Geophys. Res.-Oceans, 96, 15147–15159, 1991.
Platt, T., Sathyendranath, S., Ulloa, O., and Harrison, W.: Nutrient control of phytoplankton photosynthesis in the Western North Atlantic, Nature, 356, 229–231, 1992.
Powell, T. M., Lewis, C. V., Curchitser, E. N., Haidvogel, D. B., Hermann, A. J., and Dobbins, E. L.: Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery, J. Geophys. Res.-Oceans, 111, 356–362, https://doi.org/10.1029/2004JC002506, 2006.
Prieß, M., Koziel, S., and Slawig, T.: Marine ecosystem model calibration with real data using enhanced surrogate-based optimization, J. Comput. Sci., 4, 423–437, 2013a.
Prieß, M., Piwonski, J., Koziel, S., Oschlies, A., and Slawig, T.: Accelerated parameter identification in a 3D marine biogeochemical model using surrogate-based optimization, Ocean Model., 68, 22–36, 2013b.
Primeau, F. and Deleersnijder, E.: On the time to tracer equilibrium in the global ocean, Ocean Sci., 5, 13–28, https://doi.org/10.5194/os-5-13-2009, 2009.
Prunet, P., Minster, J.-F., Echevin, V., and Dadou, I.: Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean: 2. Adjusting a simple trophic model to chlorophyll, temperature, nitrate, and pCO2 data, Global Biogeochem. Cy., 10, 139–158, 1996.
Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., and Timmer, J.: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25, 1923–1929, 2009.
Raue, A., Kreutz, C., Maiwald, T., Klingmuller, U., and Timmer, J.: Addressing parameter identifiability by model-based experimentation, Syst. Biol. IET, 5, 120–130, 2011.
Ravela, S., Emanuel, K., and McLaughlin, D.: Data assimilation by field alignment, Physica D, 230, 127–145, 2007.
Rayner, P., Michalak, A. M., and Chevallier, F.: Fundamentals of Data Assimilation, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-148, in review, 2016.
Reed, D. C., Algar, C. K., Huber, J. A., and Dick, G. J.: Gene-centric approach to integrating environmental genomics and biogeochemical models, P. Natl. Acad. Sci. USA, 111, 1879–1884, 2014.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Riebesell, U., Bellerby, R. G. J., Grossart, H.-P., and Thingstad, F.: Mesocosm CO2 perturbation studies: from organism to community level, Biogeosciences, 5, 1157–1164, https://doi.org/10.5194/bg-5-1157-2008, 2008.
Robinson, A. R. and Lermusiaux, P. F. J.: Data assimilation for modeling and predicting coupled physical–biological interactions in the sea, in: The Sea, vol. 12, edited by: Robinson, A. R., McCarthy, J. J., and Rothschild, B. J., John Wiley & Sons, Inc., New York, 475–536, 2002.
Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM), Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015.
Roy, S., Broomhead, D. S., Platt, T., Sathyendranath, S., and Ciavatta, S.: Sequential variations of phytoplankton growth and mortality in an NPZ model: A remote-sensing-based assessment, J. Mar. Syst., 92, 16–29, 2012.
Rückelt, J., Sauerland, V., Slawig, T., Srivastav, A., Ward, B., and Patvardhan, C.: Parameter optimization and uncertainty analysis in a model of oceanic CO2 uptake using a hybrid algorithm and algorithmic differentiation, Nonlin. Anal., 11, 3993–4009, 2010.
Ruiz, J., Prieto, L., and Ortegón, F.: Diatom aggregate formation and fluxes: a modeling analysis under different size-resolution schemes and with empirically determined aggregation kernels, Deep-Sea Res. Pt. I, 49, 495–515, 2002.
Sarmiento, J. L., Slater, R. D., Fasham, M. J. R., Ducklow, H. W., Toggweiler, J. R., and Evans, G. T.: A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone, Global Biogeochem. Cy., 7, 417–450, 1993.
Sasaki, Y.: Some basic formalisms in numerical variational analysis, Mon. Weather Rev., 98, 875–883, 1970.
Sauzède, R., Claustre, H., Jamet, C., Uitz, J., Ras, J., Mignot, A., and D'Ortenzio, F.: Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications, J. Geophys. Res.-Oceans, 120, 451–470, 2015a.
Sauzède, R., Lavigne, H., Claustre, H., Uitz, J., Schmechtig, C., D'Ortenzio, F., Guinet, C., and Pesant, S.: Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean, Earth Syst. Sci. Data, 7, 261–273, https://doi.org/10.5194/essd-7-261-2015, 2015b.
Schartau, M. and Oschlies, A.: Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I – Method and parameter estimates, J. Mar. Res., 61, 765–793, 2003.
Schartau, M., Oschlies, A., and Willebrand, J.: Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method, Deep-Sea Res. Pt. II, 48, 1769–1800, https://doi.org/10.1016/S0967-0645(00)00161-2, 2001.
Schartau, M., Engel, A., Schröter, J., Thoms, S., Völker, C., and Wolf-Gladrow, D.: Modelling carbon overconsumption and the formation of extracellular particulate organic carbon, Biogeosciences, 4, 433–454, https://doi.org/10.5194/bg-4-433-2007, 2007.
Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke, I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1), Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, 2016.
Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O., Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lindsay, K., Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and Romanou, A.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment, Geosci, Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, 2016.
Shuter, B.: A model of physiological adaptation in unicellular algae, J. Theor. Biol., 78, 519–552, 1979.
Siberlin, C. and Wunsch, C.: Oceanic tracer and proxy time scales revisited, Clim. Past, 7, 27–39, https://doi.org/10.5194/cp-7-27-2011, 2011.
Siegel, D. A., Fields, E., and Buesseler, K. O.: A bottom-up view of the biological pump: Modeling source funnels above ocean sediment traps, Deep-Sea Res. Pt. I, 55, 108–127, 2008.
Simon, E. and Bertino, L.: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment, Ocean Sci., 5, 495–510, https://doi.org/10.5194/os-5-495-2009, 2009.
Simon, E. and Bertino, L.: Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: application to a 1D ocean ecosystem model, J. Mar. Syst., 89, 1–18, 2012.
Simon, E., Samuelsen, A., Bertino, L., and Mouysset, S.: Experiences in multiyear combined state–parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter, J. Mar. Syst., 152, 1–17, 2015.
Sinha, B., Buitenhuis, E. T., Le Quéré, C., and Anderson, T. R.: Comparison of the emergent behavior of a complex ecosystem model in two ocean general circulation models, Prog. Oceanogr., 84, 204–224, 2010.
Slawig, T., Prieß, M., and Kratzenstein, C.: Surrogate-Based and One-Shot Optimization Methods for PDE-Constrained Problems with an Application in Climate Models, in: Solving Computationally Expensive Engineering Problems, vol. 97 of Springer Proceedings in Mathematics & Statistics, edited by: Koziel, S., Leifsson, L., and Yang, X.-S., Springer International Publishing, Switzerland, 1–24, https://doi.org/10.1007/978-3-319-08985-0_1, 2014.
Smith, E. L.: Photosynthesis in relation to light and carbon dioxide, P. Natl. Acad. Sci. USA, 22, 504–511, 1936.
Smith, R. A.: The theoretical basis for estimating phytoplankton production and specific growth rate from chlorophyll, light and temperature data, Ecol. Model., 10, 243–264, 1980.
Smith, S. L. and Yamanaka, Y.: Quantitative comparison of photoacclimation models for marine phytoplankton, Ecol. Model., 201, 547–552, 2007a.
Smith, S. L., Yamanaka, Y., Pahlow, M., and Oschlies, A.: Optimal uptake kinetics: physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean, Mar. Ecol. Prog. Ser., 384, 1–12, 2009.
Smith, S. L., Merico, A., Wirtz, K. W., and Pahlow, M.: Leaving misleading legacies behind in plankton ecosystem modelling, J. Plankton Res., 36, 613–620, 2014.
Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai, Y., Yoshikawa, C., Sasaoka, K., Fujiki, T., Matsumoto, K., and Honda, M. C.: Flexible phytoplankton functional type (FlexPFT) model: size-scaling of traits and optimal growth, J. Plankton Res., 38, 977–992, 2015.
Soetaert, K. and Petzoldt, T.: Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME, J. Stat. Softw., 33, 1–28, https://doi.org/10.18637/jss.v033.i03, 2010.
Spitz, Y. H., Moisan, J. R., and Abbott, M. R.: Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS), Deep-Sea Res. Pt. II, 48, 1733–1768, 2001.
Stammer, D., Wunsch, C., Giering, R., Zhang, Q., Marotzke, J., Marshall, J., and Hill, C.: The global ocean circulation estimated from TOPEX/POSEIDON altimetry and the MIT general circulation model, MIT Center for Global Change Science Report, No. 49, http://hdl.handle.net/11858/00-001M-0000-0014-3D8B-C (last access: April 2017), 1997.
Steinacher, M. and Joos, F.: Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble, Biogeosciences, 13, 1071–1103, https://doi.org/10.5194/bg-13-1071-2016, 2016.
Steinacher, M., Joos, F., and Stocker, T. F.: Allowable carbon emissions lowered by multiple climate targets, Nature, 499, 197–201, 2013.
Stock, C. A., McGillicuddy, D. J., Solow, A. R., and Anderson, D. M.: Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical–biological model, Deep-Sea Res. Pt. II, 52, 2715–2744, 2005.
Stow, C. A., Jolliff, J., McGillicuddy, D. J., Doney, S. C., Allen, J. I., Friedrichs, M. A., Rose, K. A., and Wallhead, P.: Skill assessment for coupled biological/physical models of marine systems, J. Mar. Syst., 76, 4–15, 2009.
Tarantola, A.: Inverse problems theory, Methods for Data Fitting and Model Parameter Estimation, Elsevier, Southampton, 1987.
Tarantola, A.: Inverse problem theory and methods for model parameter estimation, siam, Society for Industrial and Applied Mathematics, Philadelphia, 2005.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Terry, K. L., Hirata, J., and Laws, E. A.: Light-limited growth of two strains of the marine diatom Phaeodactylum tricornutum Bohlin: chemical composition, carbon partitioning and the diel periodicity of physiological processes, J. Exp. Mar. Biol. Ecol., 68, 209–227, 1983.
Terry, K. L., Hirata, J., and Laws, E. A.: Light-, nitrogen-, and phosphorus-limited growth of Phaeodactylum tricornutum Bohlin strain TFX-1: Chemical composition, carbon partitioning, and the diel periodicity of physiological processes, J. Exp. Mar. Biol. Ecol., 86, 85–100, 1985.
Thacker, W. C.: The role of the Hessian matrix in fitting models to measurements, J. Geophys. Res.-Oceans, 94, 6177–6196, 1989.
Tilman, D.: Constraints and tradeoffs: toward a predictive theory of competition and succession, OIKOS, 58, 3–15, 1990.
Tilstone, G. H., Xie, Y.-Y., Robinson, C., Serret, P., Raitsos, D. E., Powell, T., Aranguren-Gassis, M., Garcia-Martin, E. E., and Kitidis, V.: Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean, Remote Sens. Environ., 164, 254–269, 2015.
Tjiputra, J. F., Polzin, D., and Winguth, A. M.: Assimilation of seasonal chlorophyll and nutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization, Global Biogeochem. Cy., 21, GB1001, https://doi.org/10.1029/2006GB002745, 2007.
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013.
Torres, R., Allen, J. I., and Figueiras, F. G.: Sequential data assimilation in an upwelling influenced estuary, J. Mar. Syst., 60, 317–329, 2006.
Tziperman, E. and Thacker, W. C.: An Optimal-Control/Adjoint-Equations Approach to Studying the Oceanic General Circulation, J. Phys. Oceanogr., 19, 1471–1485, https://doi.org/10.1175/1520-0485(1989)019<1471:AOCEAT>2.0.CO;2, 1989.
Urban, N. M. and Fricker, T. E.: A comparison of Latin hypercube and grid ensemble designs for the multivariate emulation of an Earth System Model, Comput. Geosci., 36, 746–755, 2010.
Vallino, J. J.: Improving marine ecosystem models: Use of data assimilation and mesocosm experiments, J. Mar. Res., 58, 117–164, https://doi.org/10.1357/002224000321511223, 2000.
Vallino, J. J.: Differences and implications in biogeochemistry from maximizing entropy production locally versus globally, Earth Syst. Dynam., 2, 69–85, https://doi.org/10.5194/esd-2-69-2011, 2011.
Vallino, J. J. and Algar, C. K.: The Thermodynamics of Marine Biogeochemical Cycles: Lotka Revisited, Annu. Rev. Mar. Sci., 8, 333–356, 2016.
Van den Meersche, K., Middelburg, J. J., Soetaert, K., Van Rijswijk, P., Boschker, H. T., and Heip, C. H.: Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: Modeling a 13C tracer experiment, Limnol. Oceanogr., 49, 862–878, 2004.
van der Meer, J.: Metabolic theories in ecology, Trends Ecol. Evol., 21, 136–140, 2006.
van der Merwe, R., Leen, T. K., Lu, Z., Frolov, S., and Baptista, A. M.: Fast neural network surrogates for very high dimensional physics-based models in computational oceanography, Neural Networks, 20, 462–478, 2007.
van Leeuwen, P. J.: Particle Filtering in Geophysical Systems, Mon. Weather Rev., 137, 4089–4114, 2009.
van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Q. J. Roy. Meteorol. Soc., 136, 1991–1999, 2010.
Van Mooy, B. A., Keil, R. G., and Devol, A. H.: Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification, Geochim. Cosmochim. Ac., 66, 457–465, 2002.
Venzon, D. and Moolgavkar, S.: A method for computing profile-likelihood-based confidence intervals, Appl. Stat., 37, 87–94, 1988.
Wallhead, P., Martin, A. P., Srokosz, M. A., and Fasham, M. J. R.: Accounting for unresolved spatial variability in marine ecosystems using time lags, J. Mar. Res., 64, 881–914, https://doi.org/10.1357/002224006779698387, 2006.
Wallhead, P. J., Garçon, V. C., and Martin, A. P.: Efficient upscaling of ocean biogeochemistry, Ocean Model., 63, 40–55, https://doi.org/10.1016/j.ocemod.2012.12.002, 2013.
Wallhead, P. J., Garçon, V. C., Casey, J. R., and Lomas, M. W.: Long-term variability of phytoplankton carbon biomass in the Sargasso Sea, Global Biogeochem. Cy., 28, 825–841, 2014.
Wan, X. and Karniadakis, G. E.: Beyond Wiener–Askey expansions: handling arbitrary pdfs, J. Scient. Comput., 27, 455–464, 2006.
Ward, B. A., Friedrichs, M. A., Anderson, T. R., and Oschlies, A.: Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models, J. Mar. Syst., 81, 34–43, 2010.
Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M.: A size-structured food-web model for the global ocean, Limnol. Oceanogr., 57, 1877–1891, 2012.
Ward, B. A., Schartau, M., Oschlies, A., Martin, A. P., Follows, M. J., and Anderson, T. R.: When is a biogeochemical model too complex? Objective model reduction and selection for North Atlantic time-series sites, Prog. Oceanogr., 116, 49–65, https://doi.org/10.1016/j.pocean.2013.06.002, 2013.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Watts, M. C. and Bigg, G. R.: Modelling and the monitoring of mesocosm experiments: two case studies, J. Plankton Res., 23, 1081–1093, 2001.
Weir, B., Miller, R. N., and Spitz, Y. H.: Implicit estimation of ecological model parameters, Bull. Math. Biol., 75, 223–257, 2013.
Westberry, T. K., Williams, P. J. L. B., and Behrenfeld, M. J.: Global net community production and the putative net heterotrophy of the oligotrophic oceans, Global Biogeochem. Cy., 26, GB4019, https://doi.org/10.1029/2011GB004094, 2012.
Wikle, C. K. and Berliner, L. M.: A Bayesian tutorial for data assimilation, Physica D, 230, 1–16, 2007.
Wikle, C. K., Milliff, R. F., Herbei, R., and Leeds, W. B.: Modern statistical methods in oceanography: A hierarchical perspective, Stat. Sci., 28, 466–486, 2013.
Williams, P. L. B. and Egge, J.: The management and behaviour of the mesocosms, Estuar. Coast. Shelf Sci., 46, 3–14, 1998.
Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., and Yamazaki, K.: History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble, Clim. Dynam., 41, 1703–1729, https://doi.org/10.1007/s00382-013-1896-4, 2013.
Wilson, J., Ridgwell, A., and Barker, S.: Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?, Biogeosciences, 12, 5547–5562, https://doi.org/10.5194/bg-12-5547-2015, 2015.
Wirtz, K.-W. and Eckhardt, B.: Effective variables in ecosystem models with an application to phytoplankton succession, Ecol. Model., 92, 33–53, 1996.
Wirtz, K. W. and Pahlow, M.: Dynamic chlorophyll and nitrogen: carbon regulation in algae optimizes instantaneous growth rate, Mar. Ecol. Prog. Ser., 402, 81–96, 2010.
Wood, S. N.: Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466, 1102–1104, 2010.
Wunsch, C. and Heimbach, P.: Practical global oceanic state estimation, Physica D, 230, 197–208, 2007.
Wunsch, C. and Heimbach, P.: How long to oceanic tracer and proxy equilibrium?, Quaternary Sci. Rev., 27, 637–651, https://doi.org/10.1016/j.quascirev.2008.01.006, 2008.
Wunsch, C., Heimbach, P., and Ponte, R. M.: The Global General Circulation of the Ocean estimated by the ECCO-consortium, Oceanography, 22, 88–103, 2009.
Xiao, Y. and Friedrichs, M. A. M.: Using biogeochemical data assimilation to assess the relative skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity of the planktonic food web, Biogeosciences, 11, 3015–3030, https://doi.org/10.5194/bg-11-3015-2014, 2014a.
Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-derived data into a one-dimensional lower trophic level marine ecosystem model, J. Geophys. Res.-Oceans, 119, 2691–2712, 2014b.
Young, G. A. and Smith, R. L.: Essentials of statistical inference, vol. 16, Cambridge University Press, Cambridge, 2005.
Zhang, W. and Arhonditsis, G. B.: A Bayesian hierarchical framework for calibrating aquatic biogeochemical models, Ecol. Model., 220, 2142–2161, 2009.
Zhao, L., Wei, H., Xu, Y., and Feng, S.: An adjoint data assimilation approach for estimating parameters in a three-dimensional ecosystem model, Ecol. Model., 186, 235–250, 2005.
Ziegeler, S. B., Dykes, J. D., and Shriver, J. F.: Spatial error metrics for oceanographic model verification, J. Atmos. Ocean. Tech., 29, 260–266, 2012.
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Plankton models have become an integral part in marine ecosystem and biogeochemical research....
Altmetrics
Final-revised paper
Preprint