Articles | Volume 14, issue 6
https://doi.org/10.5194/bg-14-1647-2017
https://doi.org/10.5194/bg-14-1647-2017
Reviews and syntheses
 | 
29 Mar 2017
Reviews and syntheses |  | 29 Mar 2017

Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling

Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies

Related authors

A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023,https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023,https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Description of a global marine particulate organic carbon-13 isotope data set
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021,https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020,https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Reanalysis of vertical mixing in mesocosm experiments: PeECE III and KOSMOS 2013
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020,https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Efficiency metrics for ocean alkalinity enhancements under responsive and prescribed atmospheric pCO2 conditions
Michael D. Tyka
Biogeosciences, 22, 341–353, https://doi.org/10.5194/bg-22-341-2025,https://doi.org/10.5194/bg-22-341-2025, 2025
Short summary
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024,https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024,https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024,https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024,https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary

Cited articles

Acevedo-Trejos, E., Brandt, G., Bruggeman, J., and Merico, A.: Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean, Scient. Rep., 5, 8918, https://doi.org/10.1038/srep08918, 2015.
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Proceeding of the Second International Symposium on Information Theory, edited byL Petrov, B. N. and Caski, F., Akademiai Kiado, 267–281, 1973.
Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005.
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Altmetrics
Final-revised paper
Preprint