Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 14, issue 6
Biogeosciences, 14, 1647–1701, 2017
https://doi.org/10.5194/bg-14-1647-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Data assimilation in carbon/biogeochemical cycles: consistent...

Biogeosciences, 14, 1647–1701, 2017
https://doi.org/10.5194/bg-14-1647-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Reviews and syntheses 29 Mar 2017

Reviews and syntheses | 29 Mar 2017

Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling

Markus Schartau et al.

Related authors

Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020,https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Reanalysis of vertical mixing in mesocosm experiments: PeECE III and KOSMOS 2013
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020,https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary
Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification
Maria Moreno de Castro, Markus Schartau, and Kai Wirtz
Biogeosciences, 14, 1883–1901, https://doi.org/10.5194/bg-14-1883-2017,https://doi.org/10.5194/bg-14-1883-2017, 2017
Short summary
A data–model synthesis to explain variability in calcification observed during a CO2 perturbation mesocosm experiment
Shubham Krishna and Markus Schartau
Biogeosciences, 14, 1857–1882, https://doi.org/10.5194/bg-14-1857-2017,https://doi.org/10.5194/bg-14-1857-2017, 2017
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020,https://doi.org/10.5194/bg-17-5043-2020, 2020
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020,https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020,https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary

Cited articles

Acevedo-Trejos, E., Brandt, G., Bruggeman, J., and Merico, A.: Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean, Scient. Rep., 5, 8918, https://doi.org/10.1038/srep08918, 2015.
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Proceeding of the Second International Symposium on Information Theory, edited byL Petrov, B. N. and Caski, F., Akademiai Kiado, 267–281, 1973.
Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol. Prog. Ser., 70, 65–72, 1991.
Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005.
Publications Copernicus
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Plankton models have become an integral part in marine ecosystem and biogeochemical research....
Citation
Altmetrics
Final-revised paper
Preprint