Articles | Volume 14, issue 1
https://doi.org/10.5194/bg-14-215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Biogeochemical constraints on the origin of methane in an alluvial aquifer: evidence for the upward migration of methane from underlying coal measures
Charlotte P. Iverach
CORRESPONDING AUTHOR
Connected Waters Initiative Research Centre, UNSW Australia, UNSW
Sydney, NSW, 2052, Australia
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW, 2234, Australia
Sabrina Beckmann
School of Biotechnology and Biomolecular Sciences, UNSW Australia,
UNSW Sydney, NSW, 2052, Australia
Dioni I. Cendón
Connected Waters Initiative Research Centre, UNSW Australia, UNSW
Sydney, NSW, 2052, Australia
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW, 2234, Australia
Mike Manefield
School of Biotechnology and Biomolecular Sciences, UNSW Australia,
UNSW Sydney, NSW, 2052, Australia
Bryce F. J. Kelly
Connected Waters Initiative Research Centre, UNSW Australia, UNSW
Sydney, NSW, 2052, Australia
Related authors
Charlotte P. Iverach, Dioni I. Cendón, Karina T. Meredith, Klaus M. Wilcken, Stuart I. Hankin, Martin S. Andersen, and Bryce F. J. Kelly
Hydrol. Earth Syst. Sci., 21, 5953–5969, https://doi.org/10.5194/hess-21-5953-2017, https://doi.org/10.5194/hess-21-5953-2017, 2017
Short summary
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022, https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary
Short summary
This study explores using the composition of methane of in-flight atmospheric air samples for greenhouse gas inventory verification. The air samples were collected above one of the largest coal seam gas production regions in the world. Adjacent to these gas fields are coal mines, Australia's largest cattle feedlot, and over 1 million grazing cattle. The results are also used to identify methane mitigation opportunities.
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Short summary
Many coal seam gas (CSG) facilities in the Surat Basin, Australia, are adjacent to other sources of methane, including agricultural, urban, and natural seeps. This makes it challenging to estimate the amount of methane being emitted into the atmosphere from CSG facilities. This research demonstrates that measurements of the carbon and hydrogen stable isotopic composition of methane can distinguish between and apportion methane emissions from CSG facilities, cattle, and many other sources.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Harald Hofmann, Dean Newborn, Ian Cartwright, Dioni I. Cendón, and Matthias Raiber
Hydrol. Earth Syst. Sci., 24, 1293–1318, https://doi.org/10.5194/hess-24-1293-2020, https://doi.org/10.5194/hess-24-1293-2020, 2020
Short summary
Short summary
Fresh groundwater (GW) on barrier islands is affected by GW use and precipitation variability. Mean residence times (MRTs) of GW on a sand barrier island were determined. They ranged from 37 years to more than 150 years for tritium and had a much larger range (modern to 5000 years) for carbon-14. Perched aquifer systems in the unsaturated zone and peat formations around wetlands are the most likely cause of longer MRTs, as they have a significant impact on regional recharge and flow diversion.
Charlotte P. Iverach, Dioni I. Cendón, Karina T. Meredith, Klaus M. Wilcken, Stuart I. Hankin, Martin S. Andersen, and Bryce F. J. Kelly
Hydrol. Earth Syst. Sci., 21, 5953–5969, https://doi.org/10.5194/hess-21-5953-2017, https://doi.org/10.5194/hess-21-5953-2017, 2017
Short summary
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
Giulia Zazzeri, Dave Lowry, Rebecca E. Fisher, James L. France, Mathias Lanoisellé, Bryce F. J. Kelly, Jaroslaw M. Necki, Charlotte P. Iverach, Elisa Ginty, Miroslaw Zimnoch, Alina Jasek, and Euan G. Nisbet
Atmos. Chem. Phys., 16, 13669–13680, https://doi.org/10.5194/acp-16-13669-2016, https://doi.org/10.5194/acp-16-13669-2016, 2016
Short summary
Short summary
Methane emissions estimates from the coal sector are highly uncertain. Precise δ13C isotopic signatures of methane sources can be used in atmospheric models for a methane budget assessment. Emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised using high-precision measurements of δ13C values. Representative isotopic signatures were provided, taking into account specific ranks of coal and mine type.
C. Duvert, M. K. Stewart, D. I. Cendón, and M. Raiber
Hydrol. Earth Syst. Sci., 20, 257–277, https://doi.org/10.5194/hess-20-257-2016, https://doi.org/10.5194/hess-20-257-2016, 2016
Short summary
Short summary
The transit time of water is a key indicator of hydrological processes at the catchment scale. Our results suggest that the use of tritium time series in streamwater can be highly valuable for assessing the temporal variations in the transit time of older groundwater contributions to streamflow. We also show that, shortly after high flow events, the transit time of the old water fraction increases and tends to approach the groundwater residence time.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
A. C. King, M. Raiber, D. I. Cendón, M. E. Cox, and S. E. Hollins
Hydrol. Earth Syst. Sci., 19, 2315–2335, https://doi.org/10.5194/hess-19-2315-2015, https://doi.org/10.5194/hess-19-2315-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
Related subject area
Biogeochemistry: Groundwater
Small-scale hydrological patterns in a Siberian permafrost ecosystem affected by drainage
Predicting the impact of spatial heterogeneity on microbially mediated nutrient cycling in the subsurface
Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils
Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization
Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA
Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches
Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatépetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms
Predicting the denitrification capacity of sandy aquifers from in situ measurements using push–pull 15N tracer tests
Biomass uptake and fire as controls on groundwater solute evolution on a southeast Australian granite: aboriginal land management hypothesis
17O excess traces atmospheric nitrate in paleo-groundwater of the Saharan desert
Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient
Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties
Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study
Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence
Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer
Characterization of broom fibers for PRB in the remediation of aquifers contaminated by heavy metals
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Syahrul Kurniawan, Marife D. Corre, Amanda L. Matson, Hubert Schulte-Bisping, Sri Rahayu Utami, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 15, 5131–5154, https://doi.org/10.5194/bg-15-5131-2018, https://doi.org/10.5194/bg-15-5131-2018, 2018
Short summary
Short summary
Our study generates information to aid policies and improve soil management practices for minimizing the negative impacts of forest conversion to rubber and oil palm plantations while maintaining production. Compared to forests, the fertilized areas of oil palm plantations had higher leaching of N, organic C, and base cations, whereas the unfertilized rubber plantations showed lower leaching of dissolved P and organic C. These signaled a decrease in extant soil fertility and groundwater quality.
Lara E. Pracht, Malak M. Tfaily, Robert J. Ardissono, and Rebecca B. Neumann
Biogeosciences, 15, 1733–1747, https://doi.org/10.5194/bg-15-1733-2018, https://doi.org/10.5194/bg-15-1733-2018, 2018
Short summary
Short summary
Organic carbon in aquifer recharge waters and sediments can fuel microbial reactions that affect groundwater quality. We used high-resolution mass spectrometry to molecularly characterize organic carbon mobilized off sediment collected from a Bangladeshi aquifer, to reference its composition against dissolved organic carbon in aquifer recharge water, to track compositional changes during incubation, and to advance understanding of microbial processing of organic carbon in anaerobic environments.
Ayumi Sugiyama, Suguru Masuda, Kazuyo Nagaosa, Maki Tsujimura, and Kenji Kato
Biogeosciences, 15, 721–732, https://doi.org/10.5194/bg-15-721-2018, https://doi.org/10.5194/bg-15-721-2018, 2018
Short summary
Short summary
The direct impact of rainfall on groundwater at Mt. Fuji, the largest volcanic mountain in Japan, was elucidated by multiple analyses including microbial DNA. Bacterial abundance and DNA not only supported the findings on the movement of groundwater obtained from chemical analyses but also elucidated chemically unseen flow. Evidence of piston flow in deep groundwater was first shown through changes in archaeal density and diversity. Microbial analysis extends our understanding of groundwater.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
M. D'Addabbo, R. Sulpizio, M. Guidi, G. Capitani, P. Mantecca, and G. Zanchetta
Biogeosciences, 12, 7087–7106, https://doi.org/10.5194/bg-12-7087-2015, https://doi.org/10.5194/bg-12-7087-2015, 2015
Short summary
Short summary
Leaching experiments were carried out on fresh ash samples from the 2012 Popocatépetl, and 2011/12 Etna eruptions, in order to investigate the release of compounds in water. Results were discussed in the light of changing pH and release of compounds for the different leachates. They were used for toxicity experiments on living biota (Xenopus laevis). They are mildly toxic, and no significant differences exist between the toxic profiles of the two leachates.
W. Eschenbach, R. Well, and W. Walther
Biogeosciences, 12, 2327–2346, https://doi.org/10.5194/bg-12-2327-2015, https://doi.org/10.5194/bg-12-2327-2015, 2015
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Biogeosciences, 11, 4099–4114, https://doi.org/10.5194/bg-11-4099-2014, https://doi.org/10.5194/bg-11-4099-2014, 2014
M. Dietzel, A. Leis, R. Abdalla, J. Savarino, S. Morin, M. E. Böttcher, and S. Köhler
Biogeosciences, 11, 3149–3161, https://doi.org/10.5194/bg-11-3149-2014, https://doi.org/10.5194/bg-11-3149-2014, 2014
T. G. Troxler, C. Coronado-Molina, D. N. Rondeau, S. Krupa, S. Newman, M. Manna, R. M. Price, and F. H. Sklar
Biogeosciences, 11, 899–914, https://doi.org/10.5194/bg-11-899-2014, https://doi.org/10.5194/bg-11-899-2014, 2014
W. Eschenbach and R. Well
Biogeosciences, 10, 1013–1035, https://doi.org/10.5194/bg-10-1013-2013, https://doi.org/10.5194/bg-10-1013-2013, 2013
H. J. M. van Grinsven, H. F. M. ten Berge, T. Dalgaard, B. Fraters, P. Durand, A. Hart, G. Hofman, B. H. Jacobsen, S. T. J. Lalor, J. P. Lesschen, B. Osterburg, K. G. Richards, A.-K. Techen, F. Vertès, J. Webb, and W. J. Willems
Biogeosciences, 9, 5143–5160, https://doi.org/10.5194/bg-9-5143-2012, https://doi.org/10.5194/bg-9-5143-2012, 2012
B. Hansen, T. Dalgaard, L. Thorling, B. Sørensen, and M. Erlandsen
Biogeosciences, 9, 3277–3286, https://doi.org/10.5194/bg-9-3277-2012, https://doi.org/10.5194/bg-9-3277-2012, 2012
J. B. Heffernan, A. R. Albertin, M. L. Fork, B. G. Katz, and M. J. Cohen
Biogeosciences, 9, 1671–1690, https://doi.org/10.5194/bg-9-1671-2012, https://doi.org/10.5194/bg-9-1671-2012, 2012
C. Fallico, S. Troisi, A. Molinari, and M. F. Rivera
Biogeosciences, 7, 2545–2556, https://doi.org/10.5194/bg-7-2545-2010, https://doi.org/10.5194/bg-7-2545-2010, 2010
Cited articles
Amaral, J. A. and Knowles, R.: Growth of methanotrophs in methane and oxygen counter gradients, FEMS Microbiol. Lett., 126, 215–220, 1995.
á Norði, K. and Thamdrup, B.: Nitrate-dependent anaerobic methane oxidation in a freshwater sediment, Geochim. Cosmochim. Ac., 132, 141–150, 2014.
Antler, G.: Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments, Estuar. Coast. Shelf S. 142, 4–11, 2014.
Antler, G., Turchyn, A. V., Herut, B., and Sivan, O.: A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane, Geology, 43, 619–622, 2015.
Arrow Energy: Our Operations, available at: http://www.arrowenergy.com.au/our-company/our-projects (last access: 18 May 2016), 2015.
Atkins, M. L., Santos, I. R., and Maher, D. T.: Groundwater methane in a potential coal seam gas extraction region, J. Hydrol. Reg. Stud., 4, 452–471, 2015.
Barker, J. F. and Fritz, P.: The occurrence and origin of methane in some groundwater flow systems, Can. J. Earth Sci., 18, 1802–1816, 1981.
Baublys, K. A., Hamilton, S. K., Golding, S. D., Vink, S., and Esterle, J.: Microbial controls on the origin and evovlution of coal seam gases and production waters of the Walloon Subgroup; Surat Basin, Australia, Int. J. Coal Geol., 147–148, 85–104, 2015.
Bowman, J.: The Methanotrophs: the families Methylococcaceae and Methylocystaceae, in: The Prokaryotes, an evolving Electronic Resource for the Microbiological Community, edited by: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Heidelberg: Springer Science Online, available at: http://www.prokaryotes.com (last access: 19 July 2016), 2000.
Cendón, D. I., Hughes, C. E., Harrison, J. J., Hankin, S. I., Johansen, M. P., Payne, T. E., Wong, H., Rowling, B., Vine, M., Wilsher, K., Guinea, A., and Thiruvoth, S.: Identification of sources and processes in a low-level radioactive waste site adjacent to landfills: groundwater hydrogeochemistry and isotopes, Aust. J. Earth Sci., 62, 123–141, 2015.
Corel Corporation: Corel Painter Education, Version 14.1.0.1105, Ottawa, Canada, 2015.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, 1961.
Currell, M., Banfield, D., Cartwright, I., and Cendón, D. I.: Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia, Environ. Sci. Pollut. R., https://doi.org/10.1007/s11356-016-7290-0, online first, 2016.
Dafny, E. and Silburn, D. M.: The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment, Hydrogeol. J., 22, 705–727, 2014.
Dedysh, S. N., Liesack, W., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Bares, A. M., Panikov, N. S., and Tiedje, J. M.: Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methnaotrophs, Int. J. Syst. Evol. Micr., 50, 955–969, 2000.
Dedysh, S. N., Knief, C., and Dunfield, P. F.: Methylocella species are facultatively methanotrophic, J. Bacteriol., 187, 4665–4670, 2005.
Dhillon, A., Teske, A., Dillon, J., Stahl, D. A., and Sogin, M. L.: Molecular characterization of sulfate-reducing bacteria in the Guaymas basin, Appl. Environ. Microb., 69, 2765–2772, 2003.
Draper, J. J. and Boreham, C. J.: Geological controls on exploitable coal seam gas distribution in Queensland, APPEA J., 46, 343–366, 2006.
Dunfield, P. F., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., and Dedysh, S. N.: Methylocella silvestris sp. nov., a novel methanotrophic bacterium isolated from an acidic forest cambisol, Int. J. Syst. Evol. Micr., 53, 1231–1239, 2003.
Duvert, C., Raiber, M., Owen, D. D. R., Cendón, D. I., Batiot-Guilhe, C., and Cox, M. E.: Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream-alluvial system: implications for recharge and inter-aquifer connectivity, Appl. Geochem., 61, 146–159, 2015.
Ettwig, K. F., Shima, S., van de Pas-Schoonen, K. T., Kahnt, J., Medema, M. H., Op den Camp, H. J. M., Jetten, M. S. M., and Storus, M.: Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea, Environ. Microbiol., 10, 3164–3173, 2008.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. Y., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., and Strous, M.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 464, 543–548, 2010.
Fike, D. A., Gammon, C. L., Ziebis, W., and Orphan, V. J.: Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach, ISME J., 2, 749–759, 2008.
Fontenot, B. E., Hunt, L. R., Hildenbrand, Z. L., Carlton Jr., D. D., Oka, H., Walton, J. L., Hopkins, D., Osorio, A., Bjorndal, B., Hu, Q. H., and Schug, K. A.: An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale Formation, Environ. Sci. Technol., 47, 10032–10040, 2013.
Green-Saxena, A., Dekas, A. E., Daleska, N. F., and Orphan, V. J.: Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane, ISME J., 8, 150–163, 2014.
Hakemian, A. S. and Rosenzweig, A. C.: The biogeochemistry of methane oxidation, Annu. Rev. Biochem., 76, 223–241, 2007.
Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W., and Saunders, J. R.: Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis, Appl. Environ. Microbiol., 62, 668–675, 1996.
Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M., and DeLong, E. F.: Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidising archaea, Appl. Environ. Microbiol., 69, 5483–5491, 2003.
Hamilton, S. K., Esterle, J. S., and Golding, S. D.: Geological interpretation of gas content trends, Walloon Subgroup, eastern Surat Basin, Queensland, Australia, Int. J. Coal. Geol., 101, 21–35, 2012.
Hamilton, S. K., Golding, S. D., Baublys, K. A., and Esterle, J. S.: Stable isotopic and molecular composition of desorbed coal seam gas from the Walloon Subgroup, eastern Surat Basin, Australia, Int. J. Coal Geol., 122, 21–36, 2014.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60, 439–471, 1996.
Heilweil, V. M., Grieve, P. L., Hynek, S. A., Brantley, S. L., Solomon, D. K., and Risser, D. W.: Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development, Environ. Sci. Technol., 49, 4057–4065, 2015.
Herczeg, A. L., Torgersen, T., Chivas, A. R., and Habermehl, M. A.: Geochemistry of ground waters from the Great Artesian Basin, Aust. J. Hydrol., 126, 225–245, 1991.
Hillier, J. R.: Groundwater connections between the Walloon Coal Measures and the Alluvium of the Condamine River, Central Downs Irrigators Limited, Bribie Island, Queensland, Australia, 2010.
Holmes, A. J., Roslev, P., McDonald, I. R., Iversen, N., Henriksen, K., and Murrell, J. C.: Characterisation of methanotrophic bacterial populations in soils showing atmospheric methane uptake, Appl. Environ. Microbiol., 65, 3312–3318, 1999.
Hu, Y., Feng, D., Liang, Q., Xia, Z., Linying, C., and Chen, D.: Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea, Deep-Sea Res. Pt. II, 122, 84–94, 2015.
Hughes, C. E. and Crawford, J.: A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data, J. Hydrol., 464–465, 344–351, 2012.
Huxley, W. J.: Condamine River valley groundwater investigation: the hydrogeology, hydrology and hydrochemistry of the Condamine River valley alluvium, Queensland Water Resources Commission, Brisbane, Australia, 1982.
Illumina: Basespace Sequence Hub, available at: http://basespace.illumina.com, last access: 3 May 2016.
Iverach, C. P., Cendón, D. I., Hankin, S. I., Lowry, D., Fisher, R. E., France, J. L., Baker, A., and Kelly, B. F. J.: Assessing connectivity between an overlying aquifer and a coals seam gas resource using methane isotopes, dissolved organic carbon and tritium, Sci. Rep., 5, 1–11, https://doi.org/10.1038/srep15996, 2015.
KCB (Klohn Crippen Berger): Conceptualisation of the Walloon Coal Measures beneath the Condamine Alluvium – Final Report, Dept. of Environment and Resource Management, Toowoomba, Queensland, Australia, 2011.
Kelly, B. F. J. and Merrick, N.: Groundwater Knowledge and Gaps in the Condamine Alliance Area for the Cotton Catchment Communities CRC, UTS – National Centre for Groundwater Management Report, NCGM, 2007.
Kieldsen, K. U., Joulian, C., and Ingvorsen, K.: Oxygen tolerance of sulfate-reducing bacteria in activated sludge, Environ. Sci. Technol., 38, 2038–2043, 2004.
Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: progress with an unknown process, Annu. Rev. Microbiol., 63, 311–334, 2009.
Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., Linke, P., and Amann, R.: Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon), Geomicrobiol. J., 20, 269–294, 2003.
Knittel, K., Loesekann, T., Boetius, A., Kort, R., and Amann, R.: Diversity and distribution of methanotrophic archaea at cold seeps, Appl. Environ. Microbiol., 71, 467–479, 2005.
Kolb, S., Knief, C., Stubner, S., and Conrad, R.: Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays, Appl. Environ. Microbiol., 69, 2423–2429, 2003.
Kotelnikova, S.: Microbial production and oxidation of methane in deep subsurface, Earth-Sci. Rev., 58, 367–395, 2002.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D.: Development of a dual-index sequencing strategy and curation pipeline for analysing amplicon sequence data on the MiSeq Illumina sequencing platform, Appl. Environ. Microbiol., 79, 5112–5120, 2013.
Lane, D. J.: 16S/23S sequencing, in: Nucelic Acid Techniques in Bacterial Systematics, edited by: Stackebrandt, E. and Goodfellow, M., Wiley, Chichester, 205–248, 1991.
Lovley, D. R. and Klug, M. J.: Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments, Geochim. Cosmochim. Ac., 50, 11–18, 1985.
Lueders, T., Manefield, M., and Friedrich, M. W.: Enhanced sensitivity of DNA-and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients, Environ. Microbiol., 6, 73–78, 2004.
Maamar, S. B., Aquilina, L., Quaiser, A., Pauwels, H., Michon-Coudouel, S., Vergnaud-Ayraud, V., Labasque, T., Roques, C., Abbott, B. W., and Dufresne, A.: Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths, Fron. Microbiol., 6, 1457, https://doi.org/10.3389/fmicb.2015.01457, 2015.
McDonald, I. R., Bodrossy, L., Chen, Y., and Murrell, J. C.: Molecular ecology techniques for the study of aerobic methanotrophs, Appl. Environ. Microbiol., 74, 1305–1315, 2008.
McDonald, L. R., Kenna, E. M., and Murrell, J. C.: Detection of methanotrophic bacteria in environmental samples with the PCR, Appl. Environ. Microbiol., 61, 116–121, 1995.
Meredith, K. T., Han, L. F., Hollins, S. E., Cendón, D. I., Jacobsen, G. E., and Baker, A.: Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon, Geochim. Cosmochim. Ac., 188, 352–367, 2016.
Moore, T. A.: Coalbed methane: a review, Int. J. Coal Geol., 101, 36–81, 2012.
Moritz, A., Hélie, J. F., Pinti, D. L., Larocque, M., Barnetche, D., Retailleau, S., Lefebvre, R., and Gélinas, Y.: Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence Lowlands (Quebec, Canada), Environ. Sci. Technol., 49, 4765–4771, 2015.
Murrell, J. C., Gilbert, B., and McDonald, I. R.: Molecular biology and regulation of methane monooxygenase, Arch. Microbiol., 173, 325–332, 2000.
Muyzer, G., Teske, A., Wirsen, C. O., and Jannasch, H. W.: Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gel electrophoresis if 16S rDNA, Arch. Microbiol., 164, 165–172, 1995.
Papendick, S. L., Downs, K. R., Vo, K. D., Hamilton, S. K., Dawson, G. K. W., Golding, S. D., and Gilcrease, P. C.: Biogenic methane potential for Surat Basin, Queensland coal seams, Int. J. Coal Geol., 88, 123–134, 2011.
Pester, M., Schleper, C., and Wagner, M.: The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology, Current Opinion in Microbiology, 14, 300–306, 2011.
OGIA: Department of Natural Resources and Mines, Queensland Government, Underground Water Impact Report for the Surat Cumulative Management Area, State of Queensland, 2016.
Op den Camp, H. J. M., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Scouten, S., Jetten, M. S. M., Birkeland, N.-K., Pol, A., and Dunfield, P. F.: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia, Environ. Microbiol., Rep. 1, 293–306, 2009.
Osborn, S. G., Vengosh, A., Warner, N. R., and Jackson, R. B.: Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing, P. Natl. Acad. Sci. USA, 108, 8172–8176, 2011.
Owen, D. D. R. and Cox, M. E.: Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir, Sci. Total Environ., 523, 233–252, 2015.
Owen, D. D. R., Shouakar-Stash, O., Morgensern, U., and Aravena, R.: Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins, Sci. Rep., 6, 1–20, 2016.
QGIS 2.8.2 Wien: Statem Toner and Open Street Map licensed under Creative Commons Attribution – ShareAlike 3.0 license (CC-BY-SA), 2015.
Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky, E., and Brown, T.: The isotopic composition of atmospheric methane, Global Biogeochem. Cy., 13, 445–461, 1999.
QWC (Queensland Water Commission): Underground water impact report: Surat cumulative management area, QWC, Brisbane, Australia, 2012.
Radke, B. M., Ferguson, J., Cresswell, R. G., Ransley, T. R., and Habermehl, M. A.: Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer Great Artesian Basin, Bureau of Rural Sciences, Canberra, 2000.
Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Sinninghe Damasté, J. S., Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M.: A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 440, 918–921, 2006.
Ransley, T. R. and Smerdon, B. D. (Eds.): Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin, A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, CSIRO Water for a Healthy Country Flagship, Australia, 2012.
Roy, J. W. and Ryan, M. C.: Effects of unconventional gas development on groundwater: a call for total dissolved gas pressure field measurements, Groundwater, 51, 480–482, 2013.
Schloss, P. D.: mothur, available at: http://www.mothur.org/ (last access: 3 May 2016), 2009.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Kesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537–7541, 2009.
Schoell, M.: The hydrogen and carbon isotopic composition of methane from natural gases of various origins, Geochim. Cosmochim. Ac., 44, 649–661, 1980.
Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K.-U., and Joye, S. B.: High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions, Nat. Commun., 6, 1–8, 2015.
Sela-Adler, M., Herut, B., Bar-Or, I., Antler, G., Eliani-Russak, E., Levy, E., Makovsky, Y., and Sivan, O.: Geochemical evidence for the biogenic methane production and consumption in the shallow sediments of the SE Mediterranean shelf (Israel), Cont. Shelf Res., 101, 117–124, 2015.
SILVA: High Quality Ribosomal RNA Databases, available at: http://www.arb-silva.de, last access: 10 May 2016.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., and Eckhert, W.: Geochemical evidence for iron-mediated anaerobic oxidation of methane, Limnol. Oceanogr., 56, 1536–1544, 2011.
Stoecker, K., Bendinger, B., Schöning, B., Nielsen, P. H., Nielsen, J. L., Baranyi, C., Toenshoff, E. R., Daims, H., and Wagner, M.: Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase, P. Natl. Acad. Sci. USA, 103, 2363–2367, 2006.
Stolper, D. A., Sessions, A. L., Ferreira, A. A., Santos Neto, E. V., Schimmelmann, S. S., Valentine, D. L., and Eiler, J. M.: Combined 13C-D and D-D clumping in methane: Methods and preliminary results, Geochim. Cosmochim. Ac., 126, 169–191, 2014.
Struchtemever, C. G., Elshahed, M. S., Duncan, K. E., and McInerney, M. J.: Evidence for aceticlastic methanogenesis in the presence of sulfate in a gas condensate-contaminated aquifer, Appl. Environ. Microbiol., 71, 5348–5353, 2005.
Timmers, P. H. A., Suarez-Zuluaga, D. A., van Rossem, M., Diender, M., Stams, A. J. M., and Plugge, C. M.: Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source, ISME J., 10, 1400–1412, 2015.
Valentine, D. L. and Reeburgh, W. S.: New perspectives on anaerobic methane oxidation, Environ. Microbiol., 2, 477–484, 2000.
Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., and Kondash, A.: A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States, Environ. Sci. Technol., 48, 8334–8348, 2014.
Vetriani, C., Jannash, H. W., MacGregor, B. J., Stahl, D. A., and Reysenbach, A. L.: Population structure and phylogenetic characterisation of marine benthic archaea in deeo-sea sediments, Appl. Environ. Microbiol., 65, 4375–4384, 1999.
Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., and Abad, J. D.: Impact of Shale Gas Development on Regional Water Quality, Science, 340, 1235009, https://doi.org/10.1126/science.1235009, 2013.
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A., and Stahl, D. A.: Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration, J. Bacteriol., 180, 2975–2982, 1998.
Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, K.-U., Stewart, L. C., Holden, J. F., Hristov, A. N., Pohlman, J. W., Morrill, P. L., Könneke, M., Delwiche, K. B., Reeves, E. P., Sutcliffe, C. N., Ritter, D. J., Seewald, J. S., McIntosh, J. C., Hemond, H. F., Jubo, M. D., Cardace, D., Hoehler, T. M., and Ono, S.: Nonequilibrium clumped isotope signals in microbial methane, Science, 348, 428–431, 2015.
Ward, C. R. and Kelly, B. F. J.: Background Paper on New South Wales Geology, University of New South Wales, Sydney, Australia, 2007.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 161, 291–314, 1999.
Whiticar, M. J. and Faber, E.: Methane oxidation in sediment and water column environments – isotope evidence, Org. Geochem., 10, 759–768, 1986.
Wilkins, D., van Sebille, E., Rintoul, S. R., Lauro, F. M., and Cavicchioli, R.: Advection shapes Southern Ocean microbial assemblages independent of distance and environmental effects, Nat. Commun., 4, 1–7, 2013.
Wilms, R., Sass, H., Koepke, B., Cypionka, H., and Engelen, B.: Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea, FEMS Microbiol. Ecol., 59, 611–621, 2007.
Wimmer, B., Hrad, M., Huber-Humer, M., Watzinger, A., Wyhlidal, S., and Reichenauer, T. G.: Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste, Waste Manage., 33, 2083–2090, 2013.
Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J. W., Brunner, B., Kuypers, M. M. M., Hinrichs, K. U., and Elvert, M.: Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane, Nat. Geosci., 7, 190–194, 2014.
Zhang, L. and Soeder, D. J.: Modeling of methane migration in shallow aquifers from shale gas well drilling, Groundwater, 54, 345–353, 2016.
Zhu, J., Wang, Q., Yuan, M., Tan, G.-Y. A., Sun, F., Wang, C., Wu, W., and Lee, P.-H.: Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review, Water Res., 90, 203–215, 2016.
Short summary
This research characterised the biogeochemical constraints on the origin of methane in an alluvial aquifer, concluding that the most likely source was the upward migration from a directly underlying coal seam. This research was undertaken due to concerns about the effect of coal seam gas production on groundwater quality in the study area. The implications include the fact that no methane is being produced in the aquifer (in situ) and that there is local natural connectivity in the study area.
This research characterised the biogeochemical constraints on the origin of methane in an...
Altmetrics
Final-revised paper
Preprint