Articles | Volume 14, issue 9
https://doi.org/10.5194/bg-14-2407-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-2407-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions
Rachel Hussherr
CORRESPONDING AUTHOR
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Maurice Levasseur
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Martine Lizotte
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Jean-Éric Tremblay
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Jacoba Mol
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Helmuth Thomas
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Michel Gosselin
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
Michel Starr
Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Québec G5H 3Z4, Canada
Lisa A. Miller
Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia V8L 4B2, Canada
Tereza Jarniková
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Nina Schuback
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Alfonso Mucci
GEOTOP and Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 0E8, Canada
Viewed
Total article views: 4,220 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Dec 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,608 | 1,463 | 149 | 4,220 | 124 | 163 |
- HTML: 2,608
- PDF: 1,463
- XML: 149
- Total: 4,220
- BibTeX: 124
- EndNote: 163
Total article views: 3,616 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 May 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,280 | 1,207 | 129 | 3,616 | 120 | 141 |
- HTML: 2,280
- PDF: 1,207
- XML: 129
- Total: 3,616
- BibTeX: 120
- EndNote: 141
Total article views: 604 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Dec 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
328 | 256 | 20 | 604 | 4 | 22 |
- HTML: 328
- PDF: 256
- XML: 20
- Total: 604
- BibTeX: 4
- EndNote: 22
Viewed (geographical distribution)
Total article views: 4,220 (including HTML, PDF, and XML)
Thereof 4,057 with geography defined
and 163 with unknown origin.
Total article views: 3,616 (including HTML, PDF, and XML)
Thereof 3,464 with geography defined
and 152 with unknown origin.
Total article views: 604 (including HTML, PDF, and XML)
Thereof 593 with geography defined
and 11 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
27 citations as recorded by crossref.
- Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming R. Bénard et al. 10.5194/bg-15-4883-2018
- Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment R. Bénard et al. 10.5194/bg-16-1167-2019
- Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean M. Ardyna et al. 10.1525/elementa.430
- Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance C. Hoppe et al. 10.1007/s00300-017-2186-0
- Polar oceans and sea ice in a changing climate M. Willis et al. 10.1525/elementa.2023.00056
- Phytoplankton dynamics in a changing Arctic Ocean M. Ardyna & K. Arrigo 10.1038/s41558-020-0905-y
- Effects of ocean acidification and short-term light/temperature stress on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary S. Jian et al. 10.1071/EN18186
- CO<sub>2</sub> effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities L. Bach & J. Taucher 10.5194/os-15-1159-2019
- Niche processes shape zooplankton community structure in a sediment-laden river basin Z. Yang et al. 10.1007/s10750-023-05355-8
- Overview paper: New insights into aerosol and climate in the Arctic J. Abbatt et al. 10.5194/acp-19-2527-2019
- Processes That Contribute to Decreased Dimethyl Sulfide Production in Response to Ocean Acidification in Subtropical Waters S. Archer et al. 10.3389/fmars.2018.00245
- A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification F. Hopkins et al. 10.5194/bg-17-163-2020
- Dissolved silicon and nitrogen in glacial rivers and water of Blago bay (Russian Arctic, Novaya Zemlya): origin, variability and spreading G. Borisenko et al. 10.30758/0555-2648-2023-69-3-356-373
- The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide H. Campen et al. 10.1007/s13280-021-01612-z
- Impact of anthropogenic pH perturbation on dimethyl sulfide cycling R. Bénard et al. 10.1525/elementa.2020.00043
- The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate F. Hopkins et al. 10.1098/rspa.2019.0769
- DMS emissions from the Arctic marginal ice zone M. Galí et al. 10.1525/elementa.2020.00113
- The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits synergistically from warming and ocean acidification C. Hoppe et al. 10.5194/bg-15-4353-2018
- Influence of open ocean biogeochemistry on aerosol and clouds: Recent findings and perspectives K. Sellegri et al. 10.1525/elementa.2023.00058
- Ocean acidification alters the nutritional value of Antarctic diatoms R. Duncan et al. 10.1111/nph.17868
- Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review R. Jackson & A. Gabric 10.3390/microorganisms10081581
- Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean K. Sugie et al. 10.3389/fmars.2019.00821
- The Influence of Ocean Acidification and Warming on DMSP & DMS in New Zealand Coastal Water A. Saint-Macary et al. 10.3390/atmos12020181
- Species Sensitivity Distributions: Understanding Ocean Acidification’s Impact on Marine Biota A. Saxena et al. 10.1051/e3sconf/202455201059
- Compensation of ocean acidification effects in Arctic phytoplankton assemblages C. Hoppe et al. 10.1038/s41558-018-0142-9
- Under-Ice Phytoplankton Blooms: Shedding Light on the “Invisible” Part of Arctic Primary Production M. Ardyna et al. 10.3389/fmars.2020.608032
- A story of resilience: Arctic diatom Chaetoceros gelidus exhibited high physiological plasticity to changing CO2 and light levels H. Biswas 10.3389/fpls.2022.1028544
27 citations as recorded by crossref.
- Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming R. Bénard et al. 10.5194/bg-15-4883-2018
- Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment R. Bénard et al. 10.5194/bg-16-1167-2019
- Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean M. Ardyna et al. 10.1525/elementa.430
- Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance C. Hoppe et al. 10.1007/s00300-017-2186-0
- Polar oceans and sea ice in a changing climate M. Willis et al. 10.1525/elementa.2023.00056
- Phytoplankton dynamics in a changing Arctic Ocean M. Ardyna & K. Arrigo 10.1038/s41558-020-0905-y
- Effects of ocean acidification and short-term light/temperature stress on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary S. Jian et al. 10.1071/EN18186
- CO<sub>2</sub> effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities L. Bach & J. Taucher 10.5194/os-15-1159-2019
- Niche processes shape zooplankton community structure in a sediment-laden river basin Z. Yang et al. 10.1007/s10750-023-05355-8
- Overview paper: New insights into aerosol and climate in the Arctic J. Abbatt et al. 10.5194/acp-19-2527-2019
- Processes That Contribute to Decreased Dimethyl Sulfide Production in Response to Ocean Acidification in Subtropical Waters S. Archer et al. 10.3389/fmars.2018.00245
- A meta-analysis of microcosm experiments shows that dimethyl sulfide (DMS) production in polar waters is insensitive to ocean acidification F. Hopkins et al. 10.5194/bg-17-163-2020
- Dissolved silicon and nitrogen in glacial rivers and water of Blago bay (Russian Arctic, Novaya Zemlya): origin, variability and spreading G. Borisenko et al. 10.30758/0555-2648-2023-69-3-356-373
- The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide H. Campen et al. 10.1007/s13280-021-01612-z
- Impact of anthropogenic pH perturbation on dimethyl sulfide cycling R. Bénard et al. 10.1525/elementa.2020.00043
- The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate F. Hopkins et al. 10.1098/rspa.2019.0769
- DMS emissions from the Arctic marginal ice zone M. Galí et al. 10.1525/elementa.2020.00113
- The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits synergistically from warming and ocean acidification C. Hoppe et al. 10.5194/bg-15-4353-2018
- Influence of open ocean biogeochemistry on aerosol and clouds: Recent findings and perspectives K. Sellegri et al. 10.1525/elementa.2023.00058
- Ocean acidification alters the nutritional value of Antarctic diatoms R. Duncan et al. 10.1111/nph.17868
- Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review R. Jackson & A. Gabric 10.3390/microorganisms10081581
- Impacts of Temperature, CO2, and Salinity on Phytoplankton Community Composition in the Western Arctic Ocean K. Sugie et al. 10.3389/fmars.2019.00821
- The Influence of Ocean Acidification and Warming on DMSP & DMS in New Zealand Coastal Water A. Saint-Macary et al. 10.3390/atmos12020181
- Species Sensitivity Distributions: Understanding Ocean Acidification’s Impact on Marine Biota A. Saxena et al. 10.1051/e3sconf/202455201059
- Compensation of ocean acidification effects in Arctic phytoplankton assemblages C. Hoppe et al. 10.1038/s41558-018-0142-9
- Under-Ice Phytoplankton Blooms: Shedding Light on the “Invisible” Part of Arctic Primary Production M. Ardyna et al. 10.3389/fmars.2020.608032
- A story of resilience: Arctic diatom Chaetoceros gelidus exhibited high physiological plasticity to changing CO2 and light levels H. Biswas 10.3389/fpls.2022.1028544
Discussed (final revised paper)
Discussed (preprint)
Latest update: 15 Nov 2024
Short summary
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the climate-active gas dimethyl sulfide (DMS), as well as its modulation, by two contrasting light regimes in the Arctic. The light regimes tested had no significant impact on either the phytoplankton or DMS concentration, whereas both variables decreased linearly with the decrease in pH. Thus, a rapid decrease in surface water pH could alter the algal biomass and inhibit DMS production in the Arctic.
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the...
Altmetrics
Final-revised paper
Preprint