Articles | Volume 14, issue 9
https://doi.org/10.5194/bg-14-2407-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-2407-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions
Rachel Hussherr
CORRESPONDING AUTHOR
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Maurice Levasseur
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Martine Lizotte
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Jean-Éric Tremblay
Québec-Océan and Takuvik joint UL-CNRS laboratory, Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
Jacoba Mol
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Helmuth Thomas
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Michel Gosselin
Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
Michel Starr
Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Québec G5H 3Z4, Canada
Lisa A. Miller
Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia V8L 4B2, Canada
Tereza Jarniková
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Nina Schuback
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Alfonso Mucci
GEOTOP and Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 0E8, Canada
Related authors
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048, https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary
Short summary
The study highlights the inter-seasonal variability of the carbonate dynamics of the East Frisian Wadden Sea, the world's largest intertidal area. During spring, increased biological activity leads to lower CO2 and nitrate levels, while total alkalinity (TA) rises slightly. In summer, TA increases, enhancing the ocean's ability to absorb CO2. Our research emphasizes the vital role of these intertidal regions in regulating carbon, contributing to a better understanding of carbon storage.
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-58, https://doi.org/10.5194/gmd-2024-58, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We developed a physical ocean model called the Hindcast of the Salish Sea (HOTSSea) that recreates conditions throughout the Salish Sea from 1980 to 2018, filling in the gaps in patchy measurements. The model predicts physical ocean properties with sufficient accuracy to be useful for a variety of applications. The model corroborates observed ocean temperature trends and was used to examine areas with few observations. Results indicate that some seasons and areas are warming faster than others.
Nicolas Schiffrine, Fatma Dhifallah, Kaven Dionne, Michel Poulin, Sylvie Lessard, André Rochon, and Michel Gosselin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-19, https://doi.org/10.5194/essd-2024-19, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Growing concern arises in the Arctic Ocean as toxic/harmful phytoplankton emerges due to climate change. The potential surge in these occurrences threatens both human health and the Arctic ecosystem. Our ongoing research yields insights into spatial patterns and biodiversity, challenging the belief that the Arctic is unsuitable for toxic/harmful algal events. This work underscores the need to comprehend and address the ecological impact of these emerging species in the Arctic environment.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Tereza Jarníková, Elise M. Olson, Susan E. Allen, Debby Ianson, and Karyn D. Suchy
Ocean Sci., 18, 1451–1475, https://doi.org/10.5194/os-18-1451-2022, https://doi.org/10.5194/os-18-1451-2022, 2022
Short summary
Short summary
Understanding drivers of phytoplankton biomass in dynamic coastal regions is key to predicting present and future ecosystem functioning. Using a clustering-based method, we objectively determined biophysical provinces in a complex estuarine sea. The Salish Sea contains three major distinct provinces where phytoplankton dynamics are controlled by diverse stratification regimes. Our method is simple to implement and broadly applicable for identifying structure in large model-derived datasets.
Bryce Van Dam, Nele Lehmann, Mary A. Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael Ernst Böttcher
Biogeosciences, 19, 3775–3789, https://doi.org/10.5194/bg-19-3775-2022, https://doi.org/10.5194/bg-19-3775-2022, 2022
Short summary
Short summary
We quantified sediment–water exchange at shallow sites in the North and Baltic seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bioirrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from −35 µmol m−2 h−1 (uptake) to 53 µmol m−2 h−1 (release). We attribute this to low net denitrification, carbonate mineral (re-)precipitation, and sulfide (re-)oxidation.
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022, https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Cynthia Evelyn Bluteau, Peter S. Galbraith, Daniel Bourgault, Vincent Villeneuve, and Jean-Éric Tremblay
Ocean Sci., 17, 1509–1525, https://doi.org/10.5194/os-17-1509-2021, https://doi.org/10.5194/os-17-1509-2021, 2021
Short summary
Short summary
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its ice-breaking and ship escorting operations. This collaboration provided the first mixing observations during winter that covered the largest spatial extent of the St. Lawrence Estuary and the Gulf of St. Lawrence ever measured in any season. Contrary to previous assumptions, we demonstrate that fluvial nitrate inputs from upstream (i.e., Great Lakes) are the most significant source of nitrate in the estuary.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Alexis Beaupré-Laperrière, Alfonso Mucci, and Helmuth Thomas
Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020, https://doi.org/10.5194/bg-17-3923-2020, 2020
Short summary
Short summary
Ocean acidification is the process by which the oceans are changing due to carbon dioxide emissions from human activities. Studying this process in the Arctic Ocean is essential as this ocean and its ecosystems are more vulnerable to the effects of acidification. Water chemistry measurements made in recent years show that waters in and around the Canadian Arctic Archipelago are considerably affected by this process and show dynamic conditions that might have an impact on local marine organisms.
Sarah Z. Rosengard, Robert W. Izett, William J. Burt, Nina Schuback, and Philippe D. Tortell
Biogeosciences, 17, 3277–3298, https://doi.org/10.5194/bg-17-3277-2020, https://doi.org/10.5194/bg-17-3277-2020, 2020
Short summary
Short summary
Net community production sets the maximum quantity of phytoplankton carbon available for the marine food web and longer-term storage in the deep ocean. We compared two approaches to estimate this critical variable from autonomous measurements of mixed-layer dissolved oxygen and particulate organic carbon, observing a significant discrepancy between estimates in an upwelling zone near the Oregon coast. We use this discrepancy to assess the fate of organic carbon produced in the mixed layer.
Mathieu Casado, Gwenaëlle Gremion, Paul Rosenbaum, Jilda Alicia Caccavo, Kelsey Aho, Nicolas Champollion, Sarah L. Connors, Adrian Dahood, Alfonso Fernandez, Martine Lizotte, Katja Mintenbeck, Elvira Poloczanska, and Gerlis Fugmann
Geosci. Commun., 3, 89–97, https://doi.org/10.5194/gc-3-89-2020, https://doi.org/10.5194/gc-3-89-2020, 2020
Short summary
Short summary
Early-career scientists (ECSs) are rarely invited to act as peer reviewers. Participating in a group peer review of the IPCC Special Report on Ocean and Cryosphere in a Changing Climate, PhD students spent more time reviewing than more established scientists and provided a similar proportion of substantive comments. By soliciting and including ECSs in peer review, the scientific community would reduce the burden on more established scientists and may improve the quality of that process.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Christina Schallenberg, Robert F. Strzepek, Nina Schuback, Lesley A. Clementson, Philip W. Boyd, and Thomas W. Trull
Biogeosciences, 17, 793–812, https://doi.org/10.5194/bg-17-793-2020, https://doi.org/10.5194/bg-17-793-2020, 2020
Short summary
Short summary
Measurements of phytoplankton health still require the use of research vessels and are thus costly and sparse. In this paper we propose a new way to assess the health of phytoplankton using simple fluorescence measurements, which can be made autonomously. In the Southern Ocean, where the most limiting nutrient for phytoplankton is iron, we found a relationship between iron limitation and the depression of fluorescence under high light, the so-called non-photochemical quenching of fluorescence.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Roya Ghahreman, Wanmin Gong, Martí Galí, Ann-Lise Norman, Stephen R. Beagley, Ayodeji Akingunola, Qiong Zheng, Alexandru Lupu, Martine Lizotte, Maurice Levasseur, and W. Richard Leaitch
Atmos. Chem. Phys., 19, 14455–14476, https://doi.org/10.5194/acp-19-14455-2019, https://doi.org/10.5194/acp-19-14455-2019, 2019
Short summary
Short summary
Atmospheric DMS(g) is a climatically important compound and the main source of biogenic sulfate in the Arctic. Its abundance in the Arctic increases during summer due to greater ice-free sea surface and higher biological activity. In this study, we implemented DMS(g) in a regional air quality forecast model configured for the Arctic. The study showed a significant impact from DMS(g) on sulfate aerosols, particularly in the 50–100 nm size range, in the Arctic marine boundary layer during summer.
Victoria E. Irish, Sarah J. Hanna, Yu Xi, Matthew Boyer, Elena Polishchuk, Mohamed Ahmed, Jessie Chen, Jonathan P. D. Abbatt, Michel Gosselin, Rachel Chang, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 19, 7775–7787, https://doi.org/10.5194/acp-19-7775-2019, https://doi.org/10.5194/acp-19-7775-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric ice-nucleating particles (INPs). In this study we compared INPs measured in microlayer and bulk seawater in the Canadian Arctic in 2016 to those measured in 2014. A strong negative correlation between salinity and freezing temperatures was observed, possibly due to INPs associated with melting sea ice. In addition, although spatial patterns of INPs and salinities were similar in 2014 and 2016, the concentrations of INPs were on average higher in 2016.
Rashed Mahmood, Knut von Salzen, Ann-Lise Norman, Martí Galí, and Maurice Levasseur
Atmos. Chem. Phys., 19, 6419–6435, https://doi.org/10.5194/acp-19-6419-2019, https://doi.org/10.5194/acp-19-6419-2019, 2019
Short summary
Short summary
This study evaluates impacts of surface seawater dimethylsulfide on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing under current and future sea ice conditions using an atmospheric global climate model. In the future, sulfate wet removal efficiency is increased by enhanced precipitation; however, simulated aerosol nucleation rates are higher, which result in an overall increase in CDNC and negative cloud radiative forcing.
Nina Schuback and Philippe D. Tortell
Biogeosciences, 16, 1381–1399, https://doi.org/10.5194/bg-16-1381-2019, https://doi.org/10.5194/bg-16-1381-2019, 2019
Short summary
Short summary
Understanding the dynamics of primary productivity requires mechanistic insight into the coupling of light absorption, electron transport and carbon fixation in response to environmental variability. Measuring such rates over diurnal timescales in contrasting regions allowed us to gain information on the regulation of photosynthetic efficiencies, with implications for the interpretation of bio-optical data, and the parameterization of models needed to monitor productivity over large scales.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Sonia Michaud, Michel Starr, Alfonso Mucci, Gustavo Ferreyra, Michel Gosselin, Jean-Éric Tremblay, Martine Lizotte, and Gui-Peng Yang
Biogeosciences, 16, 1167–1185, https://doi.org/10.5194/bg-16-1167-2019, https://doi.org/10.5194/bg-16-1167-2019, 2019
Short summary
Short summary
We present rare data on the combined effects of acidification and warming on dimethylsulfide (DMS) during a mesocosm experiment. Our results show a reduction of DMS under elevated pCO2, but warming the mesocosms by 5 °C translated into a positive offset in concentrations of DMS over the whole range of pCO2 tested. Our results suggest that warming could mitigate the expected reduction in DMS production due to OA, even increasing the net DMS production, with possible repercussions for the climate.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Rachel M. Horwitz, Alex E. Hay, William J. Burt, Richard A. Cheel, Joseph Salisbury, and Helmuth Thomas
Biogeosciences, 16, 605–616, https://doi.org/10.5194/bg-16-605-2019, https://doi.org/10.5194/bg-16-605-2019, 2019
Short summary
Short summary
High-frequency CO2 measurements are used to quantify the daily and tidal cycles of dissolved carbon in the Bay of Fundy – home to the world's largest tides. The oscillating tidal flows drive a net carbon transport, and these results suggest that previously unaccounted for tidal variation could substantially modulate the coastal ocean's response to global ocean acidification. Evaluating the impact of rising atmospheric CO2 on coastal systems requires understanding this short-term variability.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Marie-Amélie Blais, Alfonso Mucci, Gustavo Ferreyra, Michel Starr, Michel Gosselin, Jean-Éric Tremblay, and Martine Lizotte
Biogeosciences, 15, 4883–4904, https://doi.org/10.5194/bg-15-4883-2018, https://doi.org/10.5194/bg-15-4883-2018, 2018
Short summary
Short summary
We investigated the combined effect of ocean acidification and warming on the dynamics of the phytoplankton fall boom in the Lower St. Lawrence Estuary, Canada. Twelve 2600 L mesocosms were used to cover a wide range of pH and two temperatures. We found that warming, rather than acidification, is more likely to alter the autumnal bloom in this estuary in the decades to come by stimulating the development and senescence of diatoms, and promoting picocyanobacteria proliferation.
Martí Galí, Maurice Levasseur, Emmanuel Devred, Rafel Simó, and Marcel Babin
Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, https://doi.org/10.5194/bg-15-3497-2018, 2018
Short summary
Short summary
We developed a new algorithm to estimate the sea-surface concentration of dimethylsulfide (DMS) using satellite data. DMS is a gas produced by marine plankton that, once emitted to the atmosphere, plays a key climatic role by seeding cloud formation. We used the algorithm to produce global DMS maps and also regional DMS time series. The latter suggest that DMS can vary largely from one year to another, which should be taken into account in atmospheric studies.
Margaux Gourdal, Martine Lizotte, Guillaume Massé, Michel Gosselin, Michel Poulin, Michael Scarratt, Joannie Charette, and Maurice Levasseur
Biogeosciences, 15, 3169–3188, https://doi.org/10.5194/bg-15-3169-2018, https://doi.org/10.5194/bg-15-3169-2018, 2018
Short summary
Short summary
Melt ponds (MP) forming over first year ice (FYI) represent a potential source of the climate-relevant gas dimethylsulfide (DMS) to the atmosphere. Nine MP were sampled in the Canadian Arctic Archipelago. DMS concentrations reaching up to 6 nmol L−1, twice the world's surface oceanic mean, were measured. Seawater intrusion appeared to seed MP with DMS-producing communities. DMS flux from Arctic MP is expected to increase in response to the expanding areal and temporal trends of MP on FYI.
Tereza Jarníková, John Dacey, Martine Lizotte, Maurice Levasseur, and Philippe Tortell
Biogeosciences, 15, 2449–2465, https://doi.org/10.5194/bg-15-2449-2018, https://doi.org/10.5194/bg-15-2449-2018, 2018
Short summary
Short summary
This paper presents some of the first high-resolution measurements of a biologically-produced climate-active sulfur gas (dimethylsulfide – DMS) ever made in the Canadian Arctic, taken using two novel high-resolution sampling techniques aboard an icebreaker in the summer of 2015. We show increased concentrations of DMS and its precursors in frontal zones and areas of high sea ice accumulation. Our results provide a snapshot of climate-active gas dynamics in a rapidly changing Arctic.
Jonathan Lemay, Helmuth Thomas, Susanne E. Craig, William J. Burt, Katja Fennel, and Blair J. W. Greenan
Biogeosciences, 15, 2111–2123, https://doi.org/10.5194/bg-15-2111-2018, https://doi.org/10.5194/bg-15-2111-2018, 2018
Short summary
Short summary
We report a detailed mechanistic investigation of the impact of Hurricane Arthur on the CO2 cycling on the Scotian Shelf. We can show that in contrast to common thinking, the deepening of the surface during the summer months can lead to increased CO2 uptake as carbon-poor waters from subsurface water are brought up to the surface. Only during prolonged storm events is the deepening of the mixed layer strong enough to bring the (expected) carbon-rich water to the surface.
Jacoba Mol, Helmuth Thomas, Paul G. Myers, Xianmin Hu, and Alfonso Mucci
Biogeosciences, 15, 1011–1027, https://doi.org/10.5194/bg-15-1011-2018, https://doi.org/10.5194/bg-15-1011-2018, 2018
Short summary
Short summary
In the fall of 2014, the upwelling of water from the deep Canada Basin brought water onto the shallower Mackenzie Shelf in the Beaufort Sea. This increased the concentration of CO2 in water on the shelf, which alters pH and changes the transfer of CO2 between the ocean and atmosphere. These findings were a combined result of water sampling for CO2 parameters and the use of a computer model that simulates water movement in the ocean.
Martine Lizotte, Maurice Levasseur, Cliff S. Law, Carolyn F. Walker, Karl A. Safi, Andrew Marriner, and Ronald P. Kiene
Ocean Sci., 13, 961–982, https://doi.org/10.5194/os-13-961-2017, https://doi.org/10.5194/os-13-961-2017, 2017
Short summary
Short summary
During a 4-week oceanographic cruise in 2012, we investigated the water masses bordering the subtropical front near New Zealand as sources of the biogenic gas dimethyl sulfide (DMS). DMS oxidation products may influence the atmospheric radiative budget of the Earth. Concentrations of DMS were high in the study region and DMS's precursor, dimethylsulfoniopropionate, showed a strong association with phytoplankton biomass in relation to the persistent dominance of dinoflagellates/coccolithophores.
Cliff S. Law, Murray J. Smith, Mike J. Harvey, Thomas G. Bell, Luke T. Cravigan, Fiona C. Elliott, Sarah J. Lawson, Martine Lizotte, Andrew Marriner, John McGregor, Zoran Ristovski, Karl A. Safi, Eric S. Saltzman, Petri Vaattovaara, and Carolyn F. Walker
Atmos. Chem. Phys., 17, 13645–13667, https://doi.org/10.5194/acp-17-13645-2017, https://doi.org/10.5194/acp-17-13645-2017, 2017
Short summary
Short summary
We carried out a multidisciplinary study to examine how aerosol production is influenced by the production and emission of trace gases and particles in the surface ocean. Phytoplankton blooms of different species composition in frontal waters southeast of New Zealand were a significant source of dimethylsulfide and other aerosol precursors. The relationships between surface ocean biogeochemistry and aerosol composition will inform the understanding of aerosol production over the remote ocean.
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Victoria E. Irish, Pablo Elizondo, Jessie Chen, Cédric Chou, Joannie Charette, Martine Lizotte, Luis A. Ladino, Theodore W. Wilson, Michel Gosselin, Benjamin J. Murray, Elena Polishchuk, Jonathan P. D. Abbatt, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, https://doi.org/10.5194/acp-17-10583-2017, 2017
Short summary
Short summary
The ocean is a possible source of atmospheric ice-nucleating particles (INPs). In this study we found that INPs were ubiquitous in the sea-surface microlayer and bulk seawater in the Canadian Arctic. A strong negative correlation was observed between salinity and freezing temperatures (after correcting for freezing point depression). Heat and filtration treatments of the samples showed that the INPs were likely biological material with sizes between 0.02 μm and 0.2 μm in diameter.
Roya Ghahreman, Ann-Lise Norman, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Julia Burkart, Ofelia Rempillo, Heiko Bozem, Daniel Kunkel, Jennie L. Thomas, Amir A. Aliabadi, Gregory R. Wentworth, Maurice Levasseur, Ralf M. Staebler, Sangeeta Sharma, and W. Richard Leaitch
Atmos. Chem. Phys., 17, 8757–8770, https://doi.org/10.5194/acp-17-8757-2017, https://doi.org/10.5194/acp-17-8757-2017, 2017
Short summary
Short summary
We present spring and summertime vertical profile measurements of Arctic dimethyl sulfide (DMS), together with model simulations to consider what these profiles indicate about DMS sources and lifetimes in the Arctic. Our results highlight the role of local open water as the source of DMS(g) during July 2014 and the influence of long-range transport of DMS(g) from further afield in the Arctic during April 2015.
Ashley Dinauer and Alfonso Mucci
Biogeosciences, 14, 3221–3237, https://doi.org/10.5194/bg-14-3221-2017, https://doi.org/10.5194/bg-14-3221-2017, 2017
Short summary
Short summary
Because of its large physical dimensions and unimpeded connection to the Atlantic Ocean, the St. Lawrence Gulf and Estuary encompass both estuarine and marine environments. The underlying physical and biogeochemical processes are reflected in the spatial pattern of surface-water pCO2 (139–765 µatm). The shallow partially mixed upper estuary was a CO2 source due to microbial respiration, whereas the deep stratified lower estuary was generally a CO2 sink due to phytoplankton photosynthesis.
Hakase Hayashida, Nadja Steiner, Adam Monahan, Virginie Galindo, Martine Lizotte, and Maurice Levasseur
Biogeosciences, 14, 3129–3155, https://doi.org/10.5194/bg-14-3129-2017, https://doi.org/10.5194/bg-14-3129-2017, 2017
Short summary
Short summary
In remote regions, cloud conditions may be strongly influenced by oceanic source of dimethylsulfide (DMS) produced by plankton and bacteria. In the Arctic, sea ice provides an additional source of these aerosols. The results of this study highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that would be better constrained by new observations.
William J. Burt, Helmuth Thomas, Lisa A. Miller, Mats A. Granskog, Tim N. Papakyriakou, and Leah Pengelly
Biogeosciences, 13, 4659–4671, https://doi.org/10.5194/bg-13-4659-2016, https://doi.org/10.5194/bg-13-4659-2016, 2016
Short summary
Short summary
This study assesses the state of the carbon cycle in Hudson Bay, an ecologically important region of the Canadian Arctic. Results show that river input, sea-ice melt, biological activity, and general circulation patterns all have significant, and regionally dependent, impacts on the carbon cycle. The study also highlights the importance of detailed sampling procedures in highly stratified waters, and reveals that the deep Hudson Bay is primarily filled with waters of Pacific origin.
Amir A. Aliabadi, Jennie L. Thomas, Andreas B. Herber, Ralf M. Staebler, W. Richard Leaitch, Hannes Schulz, Kathy S. Law, Louis Marelle, Julia Burkart, Megan D. Willis, Heiko Bozem, Peter M. Hoor, Franziska Köllner, Johannes Schneider, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 7899–7916, https://doi.org/10.5194/acp-16-7899-2016, https://doi.org/10.5194/acp-16-7899-2016, 2016
Short summary
Short summary
For the first time, ship emissions of an ice-breaker, the Amundsen, is characterized while breaking ice in the Canadian Arctic using the plume intercepts by the Polar 6 aircraft. The study is novel, estimating lower plume expansion rates over the stable Arctic marine boundary layer and different emissions factors for oxides of nitrogen, black carbon, and carbon monoxide, compared to plume intercept studies in mid latitudes. These results can inform policy making and emission inventory datasets.
Emma L. Mungall, Betty Croft, Martine Lizotte, Jennie L. Thomas, Jennifer G. Murphy, Maurice Levasseur, Randall V. Martin, Jeremy J. B. Wentzell, John Liggio, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016, https://doi.org/10.5194/acp-16-6665-2016, 2016
Short summary
Short summary
Previous work has suggested that marine emissions of dimethyl sulfide (DMS) could impact the Arctic climate through interactions with clouds. We made the first high-time-resolution measurements of summertime atmospheric DMS in the Canadian Arctic, and performed source sensitivity simulations. We found that regional marine sources dominated, but do not appear to be sufficient to explain our observations. Understanding DMS sources in the Arctic is necessary to model future climate in the region.
Fabian Große, Naomi Greenwood, Markus Kreus, Hermann-Josef Lenhart, Detlev Machoczek, Johannes Pätsch, Lesley Salt, and Helmuth Thomas
Biogeosciences, 13, 2511–2535, https://doi.org/10.5194/bg-13-2511-2016, https://doi.org/10.5194/bg-13-2511-2016, 2016
Short summary
Short summary
We used the ECOHAM5 model to provide a consistent picture of the physical and biological drivers of oxygen deficiency in the North Sea. Regions susceptible to oxygen deficiency are characterised by low tidal mixing and moderate water depth (~ 40 m). Variations in upper layer productivity drive the year-to-year variability of bottom oxygen conditions. The model-based analysis reveals that benthic and pelagic remineralisation account for 90 % of bottom oxygen consumption observed at North Dogger.
Roya Ghahreman, Ann-Lise Norman, Jonathan P. D. Abbatt, Maurice Levasseur, and Jennie L. Thomas
Atmos. Chem. Phys., 16, 5191–5202, https://doi.org/10.5194/acp-16-5191-2016, https://doi.org/10.5194/acp-16-5191-2016, 2016
Short summary
Short summary
Aerosols in six size fractions (> 0.49–7.0 microns) were collected in the Arctic (July 2014). The isotopic composition of sulfate aerosols was measured to determine the role of biogenic and anthropogenic sources in the growth of aerosols. More than 63 % of the average sulfate concentration in the fine aerosols (> 0.49 microns) was from biogenic sources. For some samples, the S isotope ratio values for SO2 and fine aerosols were close together, suggesting the same source for SO2 and aerosol sulfur.
Josiane Mélançon, Maurice Levasseur, Martine Lizotte, Michael Scarratt, Jean-Éric Tremblay, Philippe Tortell, Gui-Peng Yang, Guang-Yu Shi, Huiwang Gao, David Semeniuk, Marie Robert, Michael Arychuk, Keith Johnson, Nes Sutherland, Marty Davelaar, Nina Nemcek, Angelica Peña, and Wendy Richardson
Biogeosciences, 13, 1677–1692, https://doi.org/10.5194/bg-13-1677-2016, https://doi.org/10.5194/bg-13-1677-2016, 2016
Short summary
Short summary
Ocean acidification is likely to affect iron-limited phytoplankton fertilization by desert dust. Short incubations of northeast subarctic Pacific waters enriched with dust and set at pH 8.0 and 7.8 were conducted. Acidification led to a significant reduction (by 16–38 %) of the final concentration of chl a reached after enrichment. These results show that dust deposition events in a low-pH iron-limited ocean are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean.
Gregory R. Wentworth, Jennifer G. Murphy, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Jean-Sébastien Côté, Isabelle Courchesne, Jean-Éric Tremblay, Jonathan Gagnon, Jennie L. Thomas, Sangeeta Sharma, Desiree Toom-Sauntry, Alina Chivulescu, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, https://doi.org/10.5194/acp-16-1937-2016, 2016
Short summary
Short summary
Air near the surface in the summertime Arctic is extremely clean and typically has very low concentrations of both gases and particles. However, atmospheric measurements taken throughout the Canadian Arctic in the summer of 2014 revealed higher-than-expected amounts of gaseous ammonia. It is likely the majority of this ammonia is coming from migratory seabird colonies throughout the Arctic. Seabird guano (dung) releases ammonia which could impact climate and sensitive Arctic ecosystems.
P. Coupel, A. Matsuoka, D. Ruiz-Pino, M. Gosselin, D. Marie, J.-É. Tremblay, and M. Babin
Biogeosciences, 12, 991–1006, https://doi.org/10.5194/bg-12-991-2015, https://doi.org/10.5194/bg-12-991-2015, 2015
N.-X. Geilfus, J.-L. Tison, S. F. Ackley, R. J. Galley, S. Rysgaard, L. A. Miller, and B. Delille
The Cryosphere, 8, 2395–2407, https://doi.org/10.5194/tc-8-2395-2014, https://doi.org/10.5194/tc-8-2395-2014, 2014
Short summary
Short summary
Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica (Oct. 2007), shows that physical and thermodynamic processes control the CO2 system in the ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, TA, TCO2, and in situ brine and bulk ice pCO2. Thicker snow covers reduced the amplitude of these changes. Both brine and bulk ice pCO2 were undersaturated, causing the sea ice to act as a sink for atmospheric CO2.
N. Jiao, C. Robinson, F. Azam, H. Thomas, F. Baltar, H. Dang, N. J. Hardman-Mountford, M. Johnson, D. L. Kirchman, B. P. Koch, L. Legendre, C. Li, J. Liu, T. Luo, Y.-W. Luo, A. Mitra, A. Romanou, K. Tang, X. Wang, C. Zhang, and R. Zhang
Biogeosciences, 11, 5285–5306, https://doi.org/10.5194/bg-11-5285-2014, https://doi.org/10.5194/bg-11-5285-2014, 2014
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
A. Forest, P. Coupel, B. Else, S. Nahavandian, B. Lansard, P. Raimbault, T. Papakyriakou, Y. Gratton, L. Fortier, J.-É. Tremblay, and M. Babin
Biogeosciences, 11, 2827–2856, https://doi.org/10.5194/bg-11-2827-2014, https://doi.org/10.5194/bg-11-2827-2014, 2014
K. E. Giesbrecht, L. A. Miller, M. Davelaar, S. Zimmermann, E. Carmack, W. K. Johnson, R. W. Macdonald, F. McLaughlin, A. Mucci, W. J. Williams, C. S. Wong, and M. Yamamoto-Kawai
Earth Syst. Sci. Data, 6, 91–104, https://doi.org/10.5194/essd-6-91-2014, https://doi.org/10.5194/essd-6-91-2014, 2014
S. Zhou, L. Gonzalez, A. Leithead, Z. Finewax, R. Thalman, A. Vlasenko, S. Vagle, L.A. Miller, S.-M. Li, S. Bureekul, H. Furutani, M. Uematsu, R. Volkamer, and J. Abbatt
Atmos. Chem. Phys., 14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, https://doi.org/10.5194/acp-14-1371-2014, 2014
A. Taalba, H. Xie, M. G. Scarratt, S. Bélanger, and M. Levasseur
Biogeosciences, 10, 6793–6806, https://doi.org/10.5194/bg-10-6793-2013, https://doi.org/10.5194/bg-10-6793-2013, 2013
S. E. Craig, H. Thomas, C. T. Jones, W. K. W. Li, B. J. W. Greenan, E. H. Shadwick, and W. J. Burt
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11255-2013, https://doi.org/10.5194/bgd-10-11255-2013, 2013
Revised manuscript not accepted
M. Ardyna, M. Babin, M. Gosselin, E. Devred, S. Bélanger, A. Matsuoka, and J.-É. Tremblay
Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, https://doi.org/10.5194/bg-10-4383-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
W. J. Burt, H. Thomas, K. Fennel, and E. Horne
Biogeosciences, 10, 53–66, https://doi.org/10.5194/bg-10-53-2013, https://doi.org/10.5194/bg-10-53-2013, 2013
J. Martin, J. É. Tremblay, and N. M. Price
Biogeosciences, 9, 5353–5371, https://doi.org/10.5194/bg-9-5353-2012, https://doi.org/10.5194/bg-9-5353-2012, 2012
Related subject area
Biogeochemistry: Air - Sea Exchange
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 1: Differences between seawater DMS estimations
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 2: Sea–air fluxes
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Global analysis of the controls on seawater dimethylsulfide spatial variability
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Concentrations of dissolved dimethyl sulfide (DMS), methanethiol and other trace gases in context of microbial communities from the temperate Atlantic to the Arctic Ocean
Marine nitrogen fixation as a possible source of atmospheric water-soluble organic nitrogen aerosols in the subtropical North Pacific
Ice nucleating properties of the sea ice diatom Fragilariopsis cylindrus and its exudates
On physical mechanisms enhancing air–sea CO2 exchange
Winter season Southern Ocean distributions of climate-relevant trace gases
How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study
Identifying the biological control of the annual and multi-year variations in South Atlantic air–sea CO2 flux
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)
Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected
New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen
Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers
An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Eukaryotic community composition in the sea surface microlayer across an east–west transect in the Mediterranean Sea
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network
Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem
Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean
Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs
Spatial variations in CO2 fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model
Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification
Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment
On the role of climate modes in modulating the air–sea CO2 fluxes in eastern boundary upwelling systems
Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study
Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades
Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind–wave channel experiment
The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models
Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2
Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean
Constraints on global oceanic emissions of N2O from observations and models
Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations
Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis
Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea
Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
Changes in the partial pressure of carbon dioxide in the Mauritanian–Cap Vert upwelling region between 2005 and 2012
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024, https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Short summary
High frequency pCO2 measurements reveal net neutral CO2 flux in a mesohaline reach of the Chesapeake Bay. Net off-gassing to the atmosphere begins in June when water temperatures rise above ~26ºC, continuing through November when temperatures fall below ~10ºC. Dissolved CO2 concentrations follow day–night cycles and are especially pronounced in warm waters. From December through May, the river is largely an uninterrupted sink for CO2 (i.e. CO2 is drawn out of the atmosphere into the river).
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024, https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Short summary
Delving into CO dynamics from the East Sea to the Bering Sea, our study unveils the influence of physical transport on CO budgets. By measuring CO concentrations and parameters, we elucidate the interplay between biological and physical processes, highlighting the role of lateral transport in shaping CO distributions. Our findings underscore the importance of considering both biogeochemical and physical drivers in understanding marine carbon fluxes.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing-Guang Lai, and Qian Liu
Biogeosciences, 21, 161–176, https://doi.org/10.5194/bg-21-161-2024, https://doi.org/10.5194/bg-21-161-2024, 2024
Short summary
Short summary
The distributions of volatile organic sulfur compounds (VSCs) (DMS, COS, and CS2) in the seawater and atmosphere of the Bohai and Yellow Seas were evaluated. Seasonal variations in VSCs were found and showed summer > spring. The COS concentrations exhibited positive correlation with DOC concentrations in seawater during summer. VSCs concentrations in seawater decreased with the depth. Sea-to-air fluxes of COS, DMS, and CS2 indicated that these marginal seas are sources of atmospheric VSCs.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Ryo Dobashi and David T. Ho
Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023, https://doi.org/10.5194/bg-20-1075-2023, 2023
Short summary
Short summary
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the global carbon cycle requires knowledge of air–sea CO2 fluxes and hence the knowledge of gas transfer velocity (k). In this study, k was determined from the dual tracer technique in Florida Bay. The observed gas transfer velocity was lower than previous studies in the coastal and open oceans at the same wind speeds, most likely due to wave attenuation by seagrass and limited wind fetch in this area.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Lukas Eickhoff, Maddalena Bayer-Giraldi, Naama Reicher, Yinon Rudich, and Thomas Koop
Biogeosciences, 20, 1–14, https://doi.org/10.5194/bg-20-1-2023, https://doi.org/10.5194/bg-20-1-2023, 2023
Short summary
Short summary
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere, in particular in polar regions. Our research focuses on the influence of the sea ice diatom Fragilariopsis cylindrus and of molecules produced by it upon heterogenous ice nucleation. For that purpose, we studied the freezing of tiny droplets containing the diatoms in a microfluidic device. Together with previous studies, our results suggest a common freezing behaviour of various sea ice diatoms.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Hana Jurikova, Osamu Abe, Fuh-Kwo Shiah, and Mao-Chang Liang
Biogeosciences, 19, 2043–2058, https://doi.org/10.5194/bg-19-2043-2022, https://doi.org/10.5194/bg-19-2043-2022, 2022
Short summary
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Jesse M. Vance, Kim Currie, John Zeldis, Peter W. Dillingham, and Cliff S. Law
Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022, https://doi.org/10.5194/bg-19-241-2022, 2022
Short summary
Short summary
Long-term monitoring is needed to detect changes in our environment. Time series of ocean carbon have aided our understanding of seasonal cycles and provided evidence for ocean acidification. Data gaps are inevitable, yet no standard method for filling gaps exists. We present a regression approach here and compare it to seven other common methods to understand the impact of different approaches when assessing seasonal to climatic variability in ocean carbon.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Liliane Merlivat, Jacqueline Boutin, David Antoine, Laurence Beaumont, Melek Golbol, and Vincenzo Vellucci
Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, https://doi.org/10.5194/bg-15-5653-2018, 2018
Short summary
Short summary
The fugacity of carbon dioxide in seawater (fCO2) was measured hourly in the surface waters of the NW Mediterranean Sea during two 3-year sequences separated by 18 years. A decrease of pH of 0.0022 yr−1 was computed. About 85 % of the accumulation of dissolved inorganic carbon (DIC) comes from chemical equilibration with increasing atmospheric CO2; the remaining 15 % accumulation is consistent with estimates of transfer of Atlantic waters through the Gibraltar Strait.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Cui-Ci Sun, Martin Sperling, and Anja Engel
Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, https://doi.org/10.5194/bg-15-3577-2018, 2018
Short summary
Short summary
Biogenic gel particles such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are important components in the sea-surface microlayer (SML). Their potential role in air–sea gas exchange and in primary organic aerosol emission has generated considerable research interest. Our wind wave channel experiment revealed how wind speed controls the accumulation and size distribution of biogenic gel particles in the SML.
N. Precious Mongwe, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, https://doi.org/10.5194/bg-15-2851-2018, 2018
Short summary
Short summary
Here we analyze seasonal cycle of CO2 biases in 10 CMIP5 models in the SO. We find two main model biases; exaggeration of primary production such that biologically driven DIC changes mainly regulates FCO2 variability, and an overestimation of the role of solubility, such that changes in temperature dominantly drive FCO2 seasonal changes to an extent of opposing biological CO2 uptake in spring. CMIP5 models show greater zonal homogeneity in the seasonal cycle of FCO2 than observational products.
Allison R. Moreno, George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny
Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018, https://doi.org/10.5194/bg-15-2761-2018, 2018
Short summary
Short summary
To bridge the missing links between variable marine elemental stoichiometry, phytoplankton physiology and carbon cycling, we embed four environmentally controlled stoichiometric models into a five-box ocean model. As predicted each model varied in its influence on the biological pump. Surprisingly, we found that variation can lead to nonlinear controls on atmospheric CO2 and carbon export, suggesting the need for further studies of ocean C : P and the impact on ocean carbon cycling.
Luke Gregor, Schalk Kok, and Pedro M. S. Monteiro
Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, https://doi.org/10.5194/bg-15-2361-2018, 2018
Short summary
Short summary
The Southern Ocean accounts for a large portion of the variability in oceanic CO2 uptake. However, the drivers of these changes are not understood due to a lack of observations. In this study, we used an ensemble of gap-filling methods to estimate surface CO2. We found that winter was a more important driver of longer-term variability driven by changes in wind stress. Summer variability of CO2 was driven primarily by increases in primary production.
Erik T. Buitenhuis, Parvadha Suntharalingam, and Corinne Le Quéré
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, https://doi.org/10.5194/bg-15-2161-2018, 2018
Short summary
Short summary
Thanks to decreases in CFC concentrations, N2O is now the third-most important greenhouse gas, and the dominant contributor to stratospheric ozone depletion. Here we estimate the ocean–atmosphere N2O flux. We find that an estimate based on observations alone has a large uncertainty. By combining observations and a range of model simulations we find that the uncertainty is much reduced to 2.45 ± 0.8 Tg N yr−1, and better constrained and at the lower end of the estimate in the latest IPCC report.
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643–1661, https://doi.org/10.5194/bg-15-1643-2018, https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Short summary
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping pCO2 in the surface water using a self-organizing map technique. The addition of Chl a as a parameter enabled us to improve the estimate of pCO2 via better representation of its decline in spring. The uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C y−1 was determined to be significant.
Alizée Roobaert, Goulven G. Laruelle, Peter Landschützer, and Pierre Regnier
Biogeosciences, 15, 1701–1720, https://doi.org/10.5194/bg-15-1701-2018, https://doi.org/10.5194/bg-15-1701-2018, 2018
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Melchor González-Dávila, J. Magdalena Santana Casiano, and Francisco Machín
Biogeosciences, 14, 3859–3871, https://doi.org/10.5194/bg-14-3859-2017, https://doi.org/10.5194/bg-14-3859-2017, 2017
Short summary
Short summary
The Mauritanian–Cap Vert upwelling is shown to be sensitive to climate change forcing on upwelling processes, which strongly affects the CO2 surface distribution, ocean acidification rates, and air–sea CO2 exchange. We confirmed an upwelling intensification, an increase in the CO2 outgassing, and an important decrease in the pH of the surface waters. Upwelling areas are poorly studied and VOS lines are shown as one of the most significant contributors to our knowledge of the ocean's response.
Cited articles
ACIA: Arctic Climate Impact Assessment, Cambridge University Press, Cambridge, UK, 1042 pp., 2005.
Andrea, M. O.: The ocean as a source of atmospheric sulfur compounds, in: The Role of Sea-Air Exchange in Geochemical Cycling, edited by: Buat-Menard, P., Reidel, Dordrecht, the Netherlands, 331–362, https://doi.org/10.1007/978-94-009-4738-2_14, 1986.
Archer, S. D., Kimmance, S. A., Stephens, J. A., Hopkins, F. E., Bellerby, R. G. J., Schulz, K. G., Piontek, J., and Engel, A.: Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters, Biogeosciences, 10, 1893–1908, https://doi.org/10.5194/bg-10-1893-2013, 2013.
Arnold, H. E., Kerrison P., and Steinke, M.: Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi, Glob. Change Biol., 19, 1007–1016, https://doi.org/10.1111/gcb.12105, 2013.
Asher, E. C., Dacey J. W. H., Jarniková, T., and Tortell, P. D.: Measurement of DMS, DMSO, and DMSP in natural waters by automated sequential chemical analysis, Limnol. Oceanogr.-Meth., 13, 451–462, https://doi.org/10.1002/lom3.10039, 2015.
Avgoustidi, V., Nightingale, P. D., Joint, I., Steinke, M., Turner, S. M., Hopkins, F. E., and Liss, P. S.: Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies, Environ. Chem., 9, 399–404, https://doi.org/10.1071/EN11125, 2012.
Belzile, C., Johannessen, S. C., Gosselin, M., Demers, S., and Miller, W. L.: Ultraviolet attenuation by dissolved and particulate constituents of first-year ice during late spring in an Arctic polynya, Limnol. Oceanogr., 45, 1265–1273, https://doi.org/10.4319/lo.2000.45.6.1265, 2000.
Brussaard, C. P. D., Noordeloos, A. A. M., Witte, H., Collenteur, M. C. J., Schulz, K., Ludwig, A., and Riebesell, U.: Arctic microbial community dynamics influenced by elevated CO2 levels, Biogeosciences, 10, 719–731, https://doi.org/10.5194/bg-10-719-2013, 2013.
Bucciarelli, E. and Sunda, W. G.: Influence of CO2, nitrate, phosphate, and silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the coastal diatom Thalassiosira pseudonana, Limnol. Oceanogr., 48, 2256–2265, https://doi.org/10.4319/lo.2003.48.6.2256, 2003.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature, 425, p. 365, https://doi.org/10.1038/425365a, 2003.
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results, Deep-Sea Res. Pt. I, 40, 2115–2129, https://doi.org/10.1016/0967-0637(93)90048-8, 1993.
Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entkhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627–637, https://doi.org/10.1038/NGEO2234, 2014.
Cottingham, K. L., Lennon, J. T., and Brown, B. L.: Knowing when to draw the line: designing more informative ecological experiments, Front. Ecol. Environ., 3, 145–152, https://doi.org/10.1890/1540-9295(2005)003[0145:KWTDTL]2.0.CO;2, 2005.
Davidson, A. T., McKinlay, J., Westwood, K., Thomson, P. G., van den Enden, R., de Salas, M., Wright, S., Johnson, R., and Berry, K.: Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities, Marine Ecol.-Prog. Ser., 552, 93–113, https://doi.org/10.3354/meps11742, 2016.
Demers, S., Belzile, C., Lean, D. R. S., Mostajir, B., Roy, S., de Mora, S., Bird, D., Gosselin, M., Chanut, J.-P., and Levasseur, M.: An experimental tool to study the effects of ultraviolet radiation on planktonic communities: a mesocosm approach, Environ. Tech., 19, 667–682, https://doi.org/10.1080/09593331908616723, 1998.
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-z, 1990.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO2 measurements, PICES Special publication, 3, 191 pp., North Pacific Marine Science Organization, Sidney, Canada, 2007.
Dickson, D. M. G., Wyn Jones, R. G., and Davenport, J.: Steady state osmotic adaptation in Ulva lactuca, Planta, 150, 158–165, https://doi.org/10.1007/BF00582360, 1980.
Doney, S. C., Balch, W. M., Fabry, V. J., and Feely, R. A.: Ocean acidification, a critical emerging problem for the ocean sciences, Oceanography, 22, 16–25, https://doi.org/10.5670/oceanog.2009.93, 2009.
Endres, S., Galgani, L., Riebesell, U., Schulz, K.-G., and Engel, A.: Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm study, PLoS ONE, 9, e99228, https://doi.org/10.1371/journal.pone.0099228, 2014.
Fabry, V. J., Macclintock, J. B., Mathis, J. T., and Grebmeier, J. M.: Ocean acidification at high latitudes: the bellwether, Oceanography, 22, 160–171, https://doi.org/10.5670/oceanog.2009.105, 2009.
Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean acidification, present conditions and future changes in a high-CO2 world, Oceanography, 22, 36–47, https://doi.org/10.5670/oceanog.2009.95, 2009.
Ferek, R. J., Hobbs, P. V., Radke, L. F., Herring, J. A., Sturges, W. T., and Cota, F. C.: Dimethyl sulphide in the arctic atmosphere, J. Geophys. Res., 100, 26093–26104, https://doi.org/10.1029/95JD02374, 1995.
Ford, J. D., McDowell, G., and Pearce, T.: The adaptation challenge in the Arctic, Nat. Clim. Change, 5, 1046–1053, https://doi.org/10.1038/NCLIMATE2723, 2015.
Frey, K. E., Perovich, D. K., and Light, B.: The spatial distribution of solar radiation under a melting Arctic sea ice cover, Geophys. Res. Lett., 38, L22501, https://doi.org/10.1029/2011GL049421, 2011.
Galí, M., Saló, V., Almeda, R., Calbet, A., and Simó, R.: Stimulation of gross dimethylsulfide (DMS) production by solar radiation, Geophys. Res. Lett., 38, L15612, https://doi.org/10.1029/2011GL048051, 2011.
Galindo, V., Levasseur, M., Mundy, C. J., Gosselin, M., Scaratt, M., Papakyriakou, T., Stefels, J., Gale, M. A., Tremblay, J.-E., and Lizotte M.: Contrasted sensitivity of DMSP production to high light exposure in two Arctic under-ice blooms, J. Exp. Mar. Biol. Ecol., 475, 38–48, https://doi.org/10.1016/j.jembe.2015.11.009, 2016.
Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review, Funct. Plant Biol., 41, 449–459, https://doi.org/10.1071/FP13247, 2014.
Gilstad, M. and Sakshaug, E.: Growth rates of ten diatom species from the Barents Sea at different irradiances and day lengths, Mar. Ecol.-Prog. Ser., 64, 169–173, 1990.
Hama, T., Inoue, T., Suzuki, R., Kashiwazaki, H., Wada, S., Sasano, D., Kosugi, N., and Ishii, M.: Response of a phytoplankton community to nutrient addition under different CO2 and pH conditions, J. Oceanogr., 72, 207–223, https://doi.org/10.1007/s10872-015-0322-4, 2016.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of seawater analysis, edited by: Grasshoff, K., Kremling, K., and Ehrhardt, M., Wiley-VCH, Weinheim, 159–228, https://doi.org/10.1002/9783527613984, 2007.
Havenhand, J., Dupont, S., and Quinn, G. P.: Designing ocean acidification experiments to maximise inference, in: Guide to Best Practices in Ocean Acidification Research and Data Reporting, edited by: Riebesell, U., Fabry, V. J., and Gattuso, J.-P., Publications Office of the European Union, Luxembourg, 67–80, 2010.
Heimdal, B. R.: Arctic Ocean Phytoplankton, in: The Arctic Seas, edited by: Herman Y., Climatology, Oceanography, Geology, and Biology, Van Nostrand Reinhold Company, New York, USA, 193–222, 1989.
Herndl, G. J., Müller-Niklas, G., and Frick, J.: Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean, Nature, 361, 717–719, https://doi.org/10.1038/361717a0, 1993.
Hervé, V., Derr, J., Douady, S., Quinet, M., Moisan, L., and Lopez, P. J.: Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms, PLoS ONE, 7, e46722, https://doi.org/10.1371/journal.pone.0046722, 2012.
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., and Strickland, J. D. H.: Fluorometric determination of chlorophyll, Journal du Conseil International pour l'Exploration de la Mer, 30, 3–15, https://doi.org/10.1093/icesjms/30.1.3, 1965.
Hopkins, F. E. and Archer, S. D.: Consistent increase in dimethyl sulfide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters, Biogeosciences, 11, 4925–4940, https://doi.org/10.5194/bg-11-4925-2014, 2014.
Hopkins, F. E., Turner, S. M., Nightingale P. D., Steinke, M., Bakker, D., and Liss P. S.: Ocean acidification and marine trace gas emissions, P. Natl. Acad. Sci. USA, 107, 760–765, https://doi.org/10.1073/pnas.0907163107, 2010.
Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K., and Wong, C. S.: Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coloumetric detector, Mar. Chem., 44, 167–187, https://doi.org/10.1016/0304-4203(93)90201-X, 1993.
Jones, G. B., Curran, M. A. J., Swan, H. B., Greene, R. M., Griffiths, F. B., and Clementson, L. A.: Influence of different water masses and biological activity on dimethylsulphide and dimethylsulphoniopropionate in the subantarctic zone of the Southern Ocean during ACE 1, J. Geophys. Res., 103, 16691–16701, https://doi.org/10.1029/98JD01200, 1998.
Keller, M. D., Bellows, W. K., and Guillard, R. R. L.: Dimethyl sulfide production in marine phytoplankton, in: ACS symposium series, edited by: Saltzman, E., and Cooper, W. J.: Biogenic sulfur in the environment, American Chemical Society, Washington DC, USA, 167–182, 1989.
Keller, M. D., Kiene, R. P., Matrai, P. A., and Bellows, W. K.: Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures, Mar. Biol., 135, 249–257, https://doi.org/10.1007/s002270050622, 1999.
Kettle, A. J. and Andreae, M. O.: Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models, J. Geophys. Res., 105, 26793–26808, https://doi.org/10.1029/2000JD900252, 2000.
Kiene, R. P. and Slezak, D.: Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling, Limnol. Oceanogr.-Meth., 4, 80–85, https://doi.org/10.4319/lom.2006.4.80, 2006.
Kiene, R. P., Linn, L. J., and Bruton, J. A.: The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using S-35-DMSP, Geochim. Cosmochim. Ac., 64, 2797–2810, https://doi.org/10.1016/s0016-7037(00)00399-9, 2000.
Kim, J.-M., Lee, K., Yang, E. J., Shin, K., Noh, J. H., Park, K.-T., Hyun, B., Jeong, H.-J., Kim, J.-H., Kim, K. Y., Kim, M., Kim, H.-C., Jang, P.-G., and Jang, M.-C.: Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world, Environ. Sci. Tech., 44, 8140–8143, https://doi.org/10.1021/es102028k, 2010.
Kirst, G. O.: Osmotic adjustment in phytoplankton and macroalgae: the use of dimethylsulfoniopropionate (DMSP), in: Biological and Environ. Chem. of DMSP and related compounds, edited by: Kiene, R. P., Visscher, P., Keller, M., and Kirst, G. O., Plenum, New York, USA, 121–129, 1996.
Kirst, G. O., Thiel, C., Wolff, H., Nothnagel, J., Wanzek, M., and Ulmke, R.: Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role, Mar. Chem., 35, 381–388, https://doi.org/10.1016/S0304-4203(09)90030-5, 1991.
Kolber, Z., Prášil, O., and Falkowski, P. G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols, Biochim. Biophys. Acta, 1367, 88–106, https://doi.org/10.1016/S0005-2728(98)00135-2, 1998.
Li, W. K. W., McLaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest algae thrive as the Arctic Ocean freshens, Science, 326, p. 539, https://doi.org/10.1126/science.1179798, 2009.
Lizotte, M., Levasseur, M., Michaud, S., Scarratt, M. G., Merzouk, A., Gosselin, M., Pommier, J., Rivkin, R. B., and Kiene, R. P.: Macroscale patterns of the biological cycling of dimethylsulfonopropionate (DMSP) and dimethylsulfide (DMS) in the Northwest Atlantic, Biogeochemistry, 110, 183–200, https://doi.org/10.1007/s10533-011-9698-4, 2012.
Lohbeck, K. T., Riebesell, U., and Reusch, T. B. H.: Adaptive evolution of a key phytoplankton species to ocean acidification, Nat. Geosci., 5, 346–351, https://doi.org/10.1038/ngeo1441, 2012.
Lohbeck, K. T., Riebesell, U., and Reusch, T. B. H.: Gene expression changes in the coccolithophore Emiliana Huxleyi after 500 generations of selection to ocean acidification, P. R. Soc. B., 281, 20140003, https://doi.org/10.1098/rspb.2014.0003, 2014.
Lovejoy, C., Vincent, W. F., Bonilla, S., Roy, S., Martineau, M.-J., Terrado, R., Potvin, M., Massana, R., and Pedrós-Alió, C.: Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas, J. Phycol., 43, 78–89, https://doi.org/10.1111/j.1529-8817.2006.00310.x, 2007.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/s0304-4203(00)00022-0, 2000.
Lund, J. W. G., Kipling, C., and Le Cren, E. D.: The inverted microscope method of estimating algal number and the statistical basis of estimations by counting, Hydrobiologia, 11, 143–170, https://doi.org/10.1007/BF00007865, 1958.
Maas, E. W., Law, C. S., Hall, J. A., Pickmere, S., Currie, K. I., Chang, F. H., Voyles, K. M., and Caird, D.: Effect of ocean acidification on bacterial abundance, activity and diversity in the Ross Sea, Antarctica, Aquat. Microb. Ecol., 70, 1–15, https://doi.org/10.3354/ame01663, 2013.
Macdonald, R. W., Kuzyk, Z. A., and Johannessen, S. C.: It is not just about the ice: a geochemical perspective on the changing Arctic Ocean, Journal of Environmental Studies and Sciences, 5, 288–301, https://doi.org/10.1007/s13412-015-0302-4, 2015.
Mackey, K. R. M., Morris, J. J., Morel, F. M. M., and Kranz, S. A.: Response of photosynthesis to ocean acidification, Oceanography, 28, 74–91, https://doi.org/10.5670/oceanog.2015.33, 2015.
Marie, D., Brussaard, C. P. D., Thyrhaug R., Bratbak, G., and Vaulot, D.: Enumeration of marine viruses in culture and natural samples by flow cytometry, Appl. Environ. Microb., 65, 45–52, 1999.
Marie, D., Simon, N., and Vaulot, D.: Phytoplankton cell counting by flow cytometry, in: Algal Culturing Techniques, edited by: Andersen, R. A., Elsevier Academic Press, Burlington, MA, USA, 253–268, 2005.
Martin, J., Tremblay, J.-É., Gagnon, J., Tremblay, G., Lapoussière, A., Jose, C., Poulin, M., Gosselin, M., Gratton, Y., and Michel, C.: Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters, Mar. Ecol.-Prog. Ser., 412, 69–84, https://doi.org/10.3354/meps08666, 2010.
Martin, J., Dumont, D., and Tremblay, J.-É.: Contribution of subsurface chlorophyll maxima to primary production in the coastal Beaufort Sea (Canadian Arctic): A model assessment, J. Geophys. Res.-Oceans, 118, 5873–5886, https://doi.org/10.1002/2013JC008843, 2013.
Matrai, P. A. and Vernet, M.: Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: Dimethyl sulfide and dimethylsulfoniopropionate budgets, J. Geophys. Res., 102, 22965–22979, https://doi.org/10.1029/96JC03870, 1997.
Maxwell, K. and Johnson, G. N.: Chlorophyll fluorescence – a practical guide, J. Exp. Bot., 51, 659–668, https://doi.org/10.1093/jexbot/51.345.659, 2000.
Mejía, L. M., Isensee. K., Méndez-Vicente, A., Pisonero, J., Shimizu, N., González, C., Monteleone, B., and Stoll, H.: B content and Si ∕ C ratios from cultured diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii): relationship to seawater pH and diatom carbon acquisition, Geochim. Cosmochim. Ac., 123, 322–337, https://doi.org/10.1016/j.gca.2013.06.011, 2013.
Milligan, A. J., Varela, D. E., Brzezinski, M. A., and Morel, F. M. M.: Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2, Limnol. Oceanogr., 49, 322–329, https://doi.org/10.4319/lo.2004.49.2.0322, 2004.
Mungall, E. L., Croft, B., Lizotte, M., Thomas, J. L., Murphy, J. G., Levasseur, M., Martin, R. V., Wentzell, J. J. B., Liggio, J., and Abbatt, J. P. D.: Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations, Atmos. Chem. Phys., 16, 6665–6680, https://doi.org/10.5194/acp-16-6665-2016, 2016.
Newbold, L. K., Olivier, A. E., Booth, T., Tiwari, B., DeSantis, T., Maguire, M., Andersen, G., van der Gast, C. J., and Whiteley, A. S.: The response of marine picoplankton to ocean acidification, Environ. Microbiol., 14, 2293–2307, https://doi.org/10.1111/j.1462-2920.2012.02762.x, 2012.
Palmer, M. A., Saenz, B. T., and Arrigo, K. R.: Impacts of sea ice retreat, thinning, and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean, Deep-Sea Res. Pt. II, 105, 85–104, https://doi.org/10.1016/j.dsr2.2014.03.016, 2014.
Park, K.-T., Lee, K., Shin, K., Yang, E. J., Hyun B., Kim, J.-M., Noh, J. H., Kim, M., Kong, B., Choi, D. H., Choi, S.-J., Jang, P.-G., and Jeong, H. J.: Direct linkage between Dimethyl Sulfide Production and Microzooplankton Grazing, Resulting from Prey Composition Change under High Partial Pressure of Carbon Dioxide Conditions, Environ. Sci. Tech., 48, 4750–4756, https://doi.org/10.1021/es403351h, 2014.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York, USA, 1984.
Paul, C., Sommer, U., Garzke, J., Moustaka-Gouni, M., Paul, A., and Matthiessen, B.: Effects of increased CO2 concentration on nutrient limited coastal summer plankton depend on temperature, Limnol. Oceanogr., 61, 853–868, https://doi.org/10.1002/lno.10256, 2016.
Paulino, A. I., Egge, J. K., and Larsen, A.: Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom, Biogeosciences, 5, 739–748, https://doi.org/10.5194/bg-5-739-2008, 2008.
Perovich, D. K., Roesler, C. S., and Pegau, W. S.: Variability in Arctic sea ice optical properties, J. Geophys. Res., 103, 1193–1208, https://doi.org/10.1029/97JC01614, 1998.
Pierrot, D. E., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, ONRL/CDIAC-105a, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA, 2006.
Piontek, J., Borchard, C., Sperling, M., Schulz, K. G., Riebesell, U., and Engel, A.: Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study, Biogeosciences, 10, 297–314, https://doi.org/10.5194/bg-10-297-2013, 2013.
Poulin, M., Daugbjerg, N., Gradinger, R., Ilyash, L., Ratkova, T., and von Quillfeldt, C.: The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment, Marine Biodiversity, 41, 13–28, https://doi.org/10.1007/s12526-010-0058-8, 2011.
Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E., and Shaw, G. E.: A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska, J. Geophys. Res., 170, 4130, https://doi.org/10.1029/2001JD001248, 2002.
Raven, J. R., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P. S., Riebesell, U., Shepherd, J., Turley, C., and Watson, A.: Ocean acidification due to increasing atmospheric carbon dioxide, The Royal Society Policy document 12/05, The Royal Society, London, UK, 2005.
Richier, S., Achterberg, E. P., Dumousseaud, C., Poulton, A. J., Suggett, D. J., Tyrrell, T., Zubkov, M. V., and Moore, C. M.: Phytoplankton responses and associated carbon cycling during shipboard carbonate chemistry manipulation experiments conducted around Northwest European shelf seas, Biogeosciences, 11, 4733–4752, https://doi.org/10.5194/bg-11-4733-2014, 2014.
Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P. (Eds.): Guide to best practices for ocean acidification research and data reporting, European commission, Brussels, Belgium, 2010.
Riebesell, U., Gattuso, J.-P., Thingstad, T. F., and Middelburg, J. J.: Preface “Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study”, Biogeosciences, 10, 5619–5626, https://doi.org/10.5194/bg-10-5619-2013, 2013.
Riley, G. A.: Phytoplankton of the North Central Sargasso Sea 1950–52, Limnol. Oceanogr., 2, 252–270, https://doi.org/10.1002/lno.1957.2.3.0252, 1957.
Rost, B., Zondervan, D., and Wolf-Gladrow, D.: Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions, Mar. Ecol.-Prog. Ser., 373, 227–237, https://doi.org/10.3354/meps07776, 2008.
Roux, R., Gosselin, M., Desrosiers, G., and Nozais, C.: Effects of reduced UV radiation on a microbenthic community during a microcosm experiment, Mar. Ecol.-Prog. Ser., 229, 29–43, https://doi.org/10.3354/meps225029, 2002.
Scarratt, M. G., Levasseur, M., Schultes, S., Michaud, S., Cantin, G., Vézina, A., Gosselin, M., and de Mora, S. J.: Production and consumption of dimethylsulfide (DMS) in North Atlantic waters, Mar. Ecol.-Prog. Ser., 204, 13–26, https://doi.org/10.3354/meps204013, 2000.
Schuback, N., Schallenberg, C., Duckham, C., Maldonado, M. T., and Tortell, P. D.: Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2 assimilation in marine phytoplankton, PLoS ONE, 10, e0133235, https://doi.org/10.1371/journal.pone.0133235, 2015.
Schuback, N., Flecken, M., Maldonado, M. T., and Tortell, P. D.: Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific, Biogeosciences, 13, 1019–1035, https://doi.org/10.5194/bg-13-1019-2016, 2016.
Schulz, K. G., Bellerby, R. G. J., Brussaard, C. P. D., Büdenbender, J., Czerny, J., Engel, A., Fischer, M., Koch-Klavsen, S., Krug, S. A., Lischka, S., Ludwig, A., Meyerhöfer, M., Nondal, G., Silyakova, A., Stuhr, A., and Riebesell, U.: Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide, Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, 2013.
Slezak, D., Kiene, R. P., Toole, D. A., Simó, R., and Kieber, D.: Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater, Aquat. Sci., 69, 377–393, https://doi.org/10.1007/s00027-007-0896-z, 2007.
Stefels, J.: Physiological aspects of the production and conversion of DMSP in marine algae and higher plants, J. Sea Res., 43, 183–197, https://doi.org/10.1016/S1385-1101(00)00030-7, 2000.
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, Biogeochemistry, 83, 245–275, https://doi.org/10.1007/978-1-4020-6214-8_18, 2007.
Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney, S. C.: Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model, Biogeosciences, 6, 515–533, https://doi.org/10.5194/bg-6-515-2009, 2009.
Sunda, W., Kieber, D. J., Kiene, R. P., and Huntsman, S.: An antioxidant function for DMSP and DMS in marine algae, Nature, 418, 317–320, https://doi.org/10.1038/nature00851, 2002.
Sunda, W., Hardison, R., Kiene, R. P., Bucciarelli, E., and Harada, H.: The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implication, Aquat. Sci., 69, 341–351, https://doi.org/10.1007/s00027-007-0887-0, 2007.
Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T. G., and Hansen, P. J.: Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland, Mar. Ecol.-Prog. Ser., 520, 21–34, https://doi.org/10.3354/meps11123, 2015.
Toole, D. A. and Siegel, A. D.: Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop, Geophys. Res. Lett., 31, L09308, https://doi.org/10.1029/2004GL019581, 2004.
Townsend, D. W. and Keller, M. D.: Dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in relation to phytoplankton in the Gulf of Maine, Mar. Ecol.-Prog. Ser., 137, 229–241, https://doi.org/10.3354/meps137229, 1996.
Tremblay, G., Belzile, C., Gosselin, M., Poulin, M., Roy, S., and Tremblay, J.-É.: Late summer phytoplankton distribution along 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes, Aquat. Microb. Ecol., 54, 55–70, https://doi.org/10.3354/ame01257, 2009.
Tremblay, J.-E., Gratton, Y., Carmack, E. C., Payne, C. D., and Price, N. M.: Impact of the large-scale Arctic circulation and the North Water Polynia on nutrient inventories in Baffin Bay, J. Geophys. Res., 107, 3112, https://doi.org/10.1029/2000JC000595, 2002.
Tremblay, J.-E., Michel, C., Hobson, K. A., Gosselin, M., and Price, N. P.: Bloom dynamics in early opening waters of the Arctic Ocean, Limnol. Oceanogr., 51, 900–912, https://doi.org/10.4319/lo.2006.51.2.0900, 2006.
Tremblay, J.-E., Robert D., Varela, D. E., Lovejoy, C., Darnis, G., Nelson, R. J., and Sastri, A. R.: Current State and trends in Canadian Arctic marine ecosystems : I. Primary production, Climatic Change, 115, 161–178, https://doi.org/10.1007/s10584-012-0496-3, 2012.
Trodahl, H. J. and Buckley, R. G.: Enhanced ultraviolet transmission of Antarctic sea ice during the austral spring, Geophys. Res. Lett., 17, 2177–2179, https://doi.org/10.1029/GL017i012p02177, 1990.
Vallina, S. M. and Simó, R.: Strong relationship between DMS and the solar radiation dose over the global surface ocean, Science, 315, 506–508, https://doi.org/10.1126/science.1133680, 2007.
Van Bergeijk, S., Van Der Zee, C., and Stal, L. J.: Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatom Cylindrotheca closterium, Eur. J. Phycol., 38, 341–349, https://doi.org/10.1080/09670260310001612600, 2003.
Vance, T. R., Davidson, A. T., Thomson, P. G., Levasseur, M., Lizotte, M., Curran, M. A. J., and Jones, G. B.: Rapide DMSP production by an Antarctic phytoplankton community exposed to natural surface irradiances in late spring, Aquat. Microb. Ecol., 71, 117–129, https://doi.org/10.3354/ame01670, 2013.
Vogt, M., Steinke, M., Turner, S., Paulino, A., Meyerhöfer, M., Riebesell, U., LeQuéré, C., and Liss, P.: Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment, Biogeosciences, 5, 407–419, https://doi.org/10.5194/bg-5-407-2008, 2008.
Von Quillfeldt, C. H.: Common diatom species in arctic spring blooms: their distribution and abundance, Bot. Mar., 43, 499–516, https://doi.org/10.1515/BOT.2000.050, 2000.
Webb, A. L., Malin, G., Hopkins, F. E., Ho, K. L., Riebesell, U., Schulz, K. G., Larsen, A., and Liss, P. S.: Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliana huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions, Environ. Chem., 13, 314–329, https://doi.org/10.1071/EN14268, 2015.
Webb, A. L., Leedham-Elvidge, E., Hughes, C., Hopkins, F. E., Malin, G., Bach, L. T., Schulz, K., Crawfurd, K., Brussaard, C. P. D., Stuhr, A., Riebesell, U., and Liss, P. S.: Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community, Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, 2016.
Wolfe, G. V., Levasseur, M., Cantin G., and Michaud, S.: Microbial consumption and production of dimethyl sulphide (DMS) in the Labrador Sea, Aquat. Microb. Ecol., 18, 197–205, https://doi.org/10.3354/ame018197, 1999.
Wu, Y., Campbell, D. A., Irwin A. J., Suggett, D. J., and Finkel, Z. V.: Ocean acidification enhances the growth rate of larger diatoms, Limnol. Oceanogr., 59, 1027–1034, https://doi.org/10.4319/lo.2014.59.3.1027, 2014.
Short summary
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the climate-active gas dimethyl sulfide (DMS), as well as its modulation, by two contrasting light regimes in the Arctic. The light regimes tested had no significant impact on either the phytoplankton or DMS concentration, whereas both variables decreased linearly with the decrease in pH. Thus, a rapid decrease in surface water pH could alter the algal biomass and inhibit DMS production in the Arctic.
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the...
Altmetrics
Final-revised paper
Preprint