Articles | Volume 14, issue 9
https://doi.org/10.5194/bg-14-2513-2017
https://doi.org/10.5194/bg-14-2513-2017
Research article
 | 
17 May 2017
Research article |  | 17 May 2017

Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest

Jie Chen, Guoliang Xiao, Yakov Kuzyakov, G. Darrel Jenerette, Ying Ma, Wei Liu, Zhengfeng Wang, and Weijun Shen

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (10 Apr 2017) by Denise Akob
AR by Weijun Shen on behalf of the Authors (12 Apr 2017)
ED: Publish as is (13 Apr 2017) by Denise Akob
AR by Weijun Shen on behalf of the Authors (17 Apr 2017)  Manuscript 
Download
Short summary
We conducted a field manipulation experiment by redistributing 67 % of dry-season rainfall into the wet season while keeping the annual rainfall unchanged in a subtropical forest. Soil net nitrification and N mineralization rates were decreased by 13–20 % in the dry season and increased by 50 % with an accelerated NO3 leaching in the wet season. Functional microbial gene abundance and microbial biomass were the main factors affecting the N-process responses to the rainfall seasonality changes.
Altmetrics
Final-revised paper
Preprint