Articles | Volume 14, issue 18
https://doi.org/10.5194/bg-14-4101-2017
https://doi.org/10.5194/bg-14-4101-2017
Research article
 | 
20 Sep 2017
Research article |  | 20 Sep 2017

Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine

Data sets

WECANN product Aura Validation Data Center https://avdc.gsfc.nasa.gov/pub/data/project/WECANN/

Download
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Altmetrics
Final-revised paper
Preprint