Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5533-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-5533-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging
Marinka E. B. van Puijenbroek
CORRESPONDING AUTHOR
Plant Ecology and Nature Conservation Group (PEN), Wageningen University & Research, Wageningen, P.O. Box 47, 6700 AA, the Netherlands
Corjan Nolet
Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, P.O. Box 47, 6700 AA, the Netherlands
Alma V. de Groot
Wageningen Marine Research, Wageningen University & Research, Den Helder, Ankerpark 27, 1781 AG, the Netherlands
Juha M. Suomalainen
Laboratory of Geo-Information and Remote Sensing, Wageningen University & Research, Wageningen, P.O. Box 47, 6700 AA, the Netherlands
Finnish Geospatial Research Institute, National Land Survey of Finland, Kirkkonummi, Finland
Michel J. P. M. Riksen
Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, P.O. Box 47, 6700 AA, the Netherlands
Frank Berendse
Plant Ecology and Nature Conservation Group (PEN), Wageningen University & Research, Wageningen, P.O. Box 47, 6700 AA, the Netherlands
Juul Limpens
Plant Ecology and Nature Conservation Group (PEN), Wageningen University & Research, Wageningen, P.O. Box 47, 6700 AA, the Netherlands
Related authors
No articles found.
Emma Turkulainen, Janne Hietala, Jiri Jormakka, Johanna Tuviala, Raquel Alves de Oliveira, Niko Koivumäki, Kirsi Karila, Roope Näsi, Juha Suomalainen, Mikko Pelto-Arvo, Päivi Lyytikäinen-Saarenmaa, and Eija Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 559–564, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-559-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-559-2024, 2024
Jan-Markus Homberger, Sasja van Rosmalen, Michel Riksen, and Juul Limpens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1944, https://doi.org/10.5194/egusphere-2024-1944, 2024
Short summary
Short summary
Understanding what determines establishment of dune-building vegetation could help to better predict coastal dune initiation and development. We monitored the establishment of dune building grasses and dune initiation in a large field experiment. Our results show that dune initiation takes place during peaks in dune-building grass establishment, which depend on favorable environmental conditions. Our findings can potentially be integrated into beach restoration and management strategies.
Väinö Karjalainen, Niko Koivumäki, Teemu Hakala, Anand George, Jesse Muhojoki, Eric Hyyppa, Juha Suomalainen, and Eija Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 167–172, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-167-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-167-2024, 2024
A.-M. Raita-Hakola, S. Rahkonen, J. Suomalainen, L. Markelin, R. Oliveira, T. Hakala, N. Koivumäki, E. Honkavaara, and I. Pölönen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1771–1778, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023, 2023
R. A. Oliveira, R. Näsi, P. Korhonen, A. Mustonen, O. Niemeläinen, N. Koivumäki, T. Hakala, J. Suomalainen, J. Kaivosoja, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1861–1866, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1861-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1861-2023, 2023
V. Karjalainen, T. Hakala, A. George, N. Koivumäki, J. Suomalainen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 597–603, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-597-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-597-2023, 2023
J. Suomalainen, R. A. Oliveira, T. Hakala, N. Koivumäki, L. Markelin, R. Näsi, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 67–72, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-67-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-67-2022, 2022
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
E. Honkavaara, R. Näsi, R. Oliveira, N. Viljanen, J. Suomalainen, E. Khoramshahi, T. Hakala, O. Nevalainen, L. Markelin, M. Vuorinen, V. Kankaanhuhta, P. Lyytikäinen-Saarenmaa, and L. Haataja
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 429–434, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-429-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-429-2020, 2020
J. I. Peltoniemi, M. Gritsevich, J. Markkanen, T. Hakala, J. Suomalainen, N. Zubko, O. Wilkman, and K. Muinonen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 375–382, https://doi.org/10.5194/isprs-annals-V-1-2020-375-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-375-2020, 2020
Corjan Nolet and Michel J. P. M. Riksen
Earth Surf. Dynam., 7, 129–145, https://doi.org/10.5194/esurf-7-129-2019, https://doi.org/10.5194/esurf-7-129-2019, 2019
Short summary
Short summary
This paper examines how an experimental mega-scale beach nourishment ("Sand Motor") contributes to creating favorable conditions for dune development. These conditions, involving a steady supply of wind-blown sand towards space where it can accumulate, are identified using publicly available remote sensing data. It is demonstrated that the Sand Motor supports a high potential for new dunes to develop, but human disturbances may hamper this development, which negatively impacts coastal safety.
L. Markelin, J. Suomalainen, T. Hakala, R. A. Oliveira, N. Viljanen, R. Näsi, B. Scott, T. Theocharous, C. Greenwell, N. Fox, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 283–288, https://doi.org/10.5194/isprs-archives-XLII-1-283-2018, https://doi.org/10.5194/isprs-archives-XLII-1-283-2018, 2018
Gustaf Granath, Håkan Rydin, Jennifer L. Baltzer, Fia Bengtsson, Nicholas Boncek, Luca Bragazza, Zhao-Jun Bu, Simon J. M. Caporn, Ellen Dorrepaal, Olga Galanina, Mariusz Gałka, Anna Ganeva, David P. Gillikin, Irina Goia, Nadezhda Goncharova, Michal Hájek, Akira Haraguchi, Lorna I. Harris, Elyn Humphreys, Martin Jiroušek, Katarzyna Kajukało, Edgar Karofeld, Natalia G. Koronatova, Natalia P. Kosykh, Mariusz Lamentowicz, Elena Lapshina, Juul Limpens, Maiju Linkosalmi, Jin-Ze Ma, Marguerite Mauritz, Tariq M. Munir, Susan M. Natali, Rayna Natcheva, Maria Noskova, Richard J. Payne, Kyle Pilkington, Sean Robinson, Bjorn J. M. Robroek, Line Rochefort, David Singer, Hans K. Stenøien, Eeva-Stiina Tuittila, Kai Vellak, Anouk Verheyden, James Michael Waddington, and Steven K. Rice
Biogeosciences, 15, 5189–5202, https://doi.org/10.5194/bg-15-5189-2018, https://doi.org/10.5194/bg-15-5189-2018, 2018
Short summary
Short summary
Peat constitutes a long-term archive for climate reconstruction by using the isotopic composition of carbon and oxygen. We analysed isotopes in two peat moss species across North America and Eurasia. Peat (moss tissue) isotope composition was predicted by soil moisture and isotopic composition of the rainwater but differed between species. Our results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Peter Mueller, Lisa M. Schile-Beers, Thomas J. Mozdzer, Gail L. Chmura, Thomas Dinter, Yakov Kuzyakov, Alma V. de Groot, Peter Esselink, Christian Smit, Andrea D'Alpaos, Carles Ibáñez, Magdalena Lazarus, Urs Neumeier, Beverly J. Johnson, Andrew H. Baldwin, Stephanie A. Yarwood, Diana I. Montemayor, Zaichao Yang, Jihua Wu, Kai Jensen, and Stefanie Nolte
Biogeosciences, 15, 3189–3202, https://doi.org/10.5194/bg-15-3189-2018, https://doi.org/10.5194/bg-15-3189-2018, 2018
R. A. Oliveira, E. Khoramshahi, J. Suomalainen, T. Hakala, N. Viljanen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 789–795, https://doi.org/10.5194/isprs-archives-XLII-2-789-2018, https://doi.org/10.5194/isprs-archives-XLII-2-789-2018, 2018
R. Näsi, N. Viljanen, R. Oliveira, J. Kaivosoja, O. Niemeläinen, T. Hakala, L. Markelin, S. Nezami, J. Suomalainen, and E. Honkavaara
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1305–1310, https://doi.org/10.5194/isprs-archives-XLII-3-1305-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1305-2018, 2018
M. H. D. Franceschini, H. Bartholomeus, D. van Apeldoorn, J. Suomalainen, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 109–112, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, 2017
Henk-Jan van der Kolk, Monique M. P. D. Heijmans, Jacobus van Huissteden, Jeroen W. M. Pullens, and Frank Berendse
Biogeosciences, 13, 6229–6245, https://doi.org/10.5194/bg-13-6229-2016, https://doi.org/10.5194/bg-13-6229-2016, 2016
Short summary
Short summary
Changes in tundra vegetation structure may amplify Arctic climate warming. Our simulations with a new tundra vegetation model suggest that precipitation increases favour grass abundance, whereas warming favours shrub dominance. However, abrupt permafrost thaw initiating wetland formation leads to grass dominance. Our simulations show that a wetter tundra, due to increased precipitation or abrupt permafrost thaw, could result in local shrub decline instead of the widely expected shrub expansion.
Related subject area
Biogeophysics: Biota & Sediment Stability
Mobilisation thresholds for coral rubble and consequences for windows of reef recovery
Short-term response of benthic foraminifera to fine-sediment depositional events simulated in microcosm
Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment
A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage
Tania M. Kenyon, Daniel Harris, Tom Baldock, David Callaghan, Christopher Doropoulos, Gregory Webb, Steven P. Newman, and Peter J. Mumby
Biogeosciences, 20, 4339–4357, https://doi.org/10.5194/bg-20-4339-2023, https://doi.org/10.5194/bg-20-4339-2023, 2023
Short summary
Short summary
The movement of rubble on coral reefs can lead to persistent unstable rubble beds that hinder reef recovery. To identify where such rubble beds are, we need to know the minimum velocity that will move rubble. We found that loose rubble had a 50 % chance of being moved when near-bed wave orbital velocities reached ~0.3 m s−1; rubble moved more if pieces were small and had no branches. Rubble beds that experience frequent movement would be good candidates for rubble stabilisation interventions.
Corentin Guilhermic, Maria Pia Nardelli, Aurélia Mouret, Damien Le Moigne, and Hélène Howa
Biogeosciences, 20, 3329–3351, https://doi.org/10.5194/bg-20-3329-2023, https://doi.org/10.5194/bg-20-3329-2023, 2023
Short summary
Short summary
Coastal seas experience sediment discharges whose intensity and frequency can strongly be affected by human activities and climate change. We analysed the response of benthic species in an experimental set-up. After the burial under a single thick layer of sediment or multiple thin layers at different times, the analysed species migrate rapidly towards the surface. A stronger effect of a single thick deposit on standing stocks and biodiversity is visible compared to frequent low-sediment inputs.
T. Balke, T. J. Bouma, P. M. J. Herman, E. M. Horstman, C. Sudtongkong, and E. L. Webb
Biogeosciences, 10, 5411–5419, https://doi.org/10.5194/bg-10-5411-2013, https://doi.org/10.5194/bg-10-5411-2013, 2013
E. Vidal Vázquez, J. G. V. Miranda, and J. Paz-Ferreiro
Biogeosciences, 7, 2989–3004, https://doi.org/10.5194/bg-7-2989-2010, https://doi.org/10.5194/bg-7-2989-2010, 2010
Cited articles
Al-Awadhi, J. M. and Al-Dousari, A. M.: Morphological characteristics and development of coastal nabkhas, north-east Kuwait, Int. J. Earth Sci., 102, 949–958, https://doi.org/10.1007/s00531-012-0833-9, 2013.
Anthony, E. J.: Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea, Geomorphology, 199, 8–21, https://doi.org/10.1016/j.geomorph.2012.06.007, 2013.
Arens, S. M.: Patterns of sand transport on vegetated foredunes, Geomorphology, 17, 339–350, https://doi.org/10.1016/0169-555X(96)00016-5, 1996.
Baas, A. C. W.: Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments, Geomorphology, 48, 309–328, https://doi.org/10.1016/S0169-555X(02)00187-3, 2002.
Bakker, J. P.: Phytogeographical aspects of the vegetation of the outer dunes in the Atlantic province of Europe, J. Biogeogr., 3, 85–104, 1976.
Bouma, T. J., van Duren, L. A., Temmerman, S., Claverie, T., Blanco-Garcia, A., Ysebaert, T., and Herman, P. M. J.: Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments, Cont. Shelf Res., 27, 1020–1045, https://doi.org/10.1016/j.csr.2005.12.019, 2007.
Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 62, 241–252, https://doi.org/10.1016/S0034-4257(97)00104-1, 1997.
Carter, R. W. G.: Near-future sea level impacts on coastal dune landscapes, Landsc. Ecol., 6, 29–39, https://doi.org/10.1007/BF00157742, 1991.
Charbonneau, B. R., Wootton, L. S., Wnek, J. P., Langley, J. A., and Posner, M. A.: A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during Hurricane Sandy, J. Appl. Ecol., 54, 1385–1394, https://doi.org/10.1111/1365-2664.12846, 2017.
Claudino-Sales, V., Wang, P., and Horwitz, M. H.: Factors controlling the survival of coastal dunes during multiple hurricane impacts in 2004 and 2005: Santa Rosa barrier island, Florida, Geomorphology, 95, 295–315, https://doi.org/10.1016/j.geomorph.2007.06.004, 2008.
Clemmensen, L. B.: Storm-generated eolian sand shadows and their sedimentary structures, Vejers Strand, Denmark, J. Sediment. Res., 56, 520–527, https://doi.org/10.1306/212F8977-2B24-11D7-8648000102C1865D, 1986.
Davidson-Arnott, R. G. D. and Law, M. N.: Seasonal patterns and controls on sediment supply to coastal foredunes, Long Point Lake Erie, in: Coastal Dunes: Forms and Process, 177–200, Wiley, London, UK, 1990.
de Vries, S., Southgate, H. N., Kanning, W., and Ranasinghe, R.: Dune behavior and aeolian transport on decadal timescales, Coast. Eng., 67, 41–53, https://doi.org/10.1016/j.coastaleng.2012.04.002, 2012.
Delgado-Fernandez, I.: A review of the application of the fetch effect to modelling sand supply to coastal foredunes, Aeolian Res., 2, 61–70, https://doi.org/10.1016/j.aeolia.2010.04.001, 2010.
Dissanayake, P., Brown, J., Wisse, P., and Karunarathna, H.: Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics, Estuar. Coast. Shelf Sci., 164, 301–312, https://doi.org/10.1016/j.ecss.2015.07.040, 2015.
Dong, Z., Wang, H., Liu, X., and Wang, X.: The blown sand flux over a sandy surface: a wind tunnel investigation on the fetch effect, Geomorphology, 57, 117–127, https://doi.org/10.1016/S0169-555X(03)00087-4, 2004.
Dong, Z., Luo, W., Qian, G., and Lu, P.: Wind tunnel simulation of the three-dimensional airflow patterns around shrubs, J. Geophys. Res.-Earth, 113, F02016, https://doi.org/10.1029/2007JF000880, 2008.
Du, J., Yan, P., and Dong, Y.: The progress and prospects of nebkhas in arid areas, J. Geogr. Sci., 20, 712–728, https://doi.org/10.1007/s11442-010-0806-5, 2010.
Durán Vinent, O. and Moore, L. J.: Vegetation controls on the maximum size of coastal dunes, P. Natl. Acad. Sci., 110, 17217–17222, https://doi.org/10.1073/pnas.1307580110, 2013.
ESRI: ArcGIS Desktop: Release 10.3, CA: Environmental Systems Research, Redlands, USA, 2016.
Everard, M., Jones, L., and Watts, B.: Have we neglected the societal importance of sand dunes? An ecosystem services perspective, Aquat. Conserv. Mar. Freshw. Ecosyst., 20, 476–487, https://doi.org/10.1002/aqc.1114, 2010.
Feagin, R. A., Sherman, D. J., and Grant, W. E.: Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats, Front. Ecol. Environ., 3, 359–364, https://doi.org/10.1890/1540-9295(2005)003[0359:CEGSRA]2.0.CO;2, 2005.
Ferreira, Ó.: The role of storm groups in the erosion of sandy coasts, Earth Surf. Process. Landf., 31, 1058–1060, https://doi.org/10.1002/esp.1378, 2006.
Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E.: Topographic structure from motion: a new development in photogrammetric measurement, Earth Surf. Process. Landf., 38, 421–430, https://doi.org/10.1002/esp.3366, 2013.
Fox, J. and Weisberg, S.: An(R) Companion to Applied Regression, Sage, Thousand Oaks, USA, 2011.
Gunatilaka, A. and Mwango, S. B.: Flow separation and the internal structure of shadow dunes, Sediment. Geol., 61, 125–134, https://doi.org/10.1016/0037-0738(89)90045-6, 1989.
Hacker, S. D., Zarnetske, P., Seabloom, E., Ruggiero, P., Mull, J., Gerrity, S., and Jones, C.: Subtle differences in two non-native congeneric beach grasses significantly affect their colonization, spread, and impact, Oikos, 121, 138–148, https://doi.org/10.1111/j.1600-0706.2011.18887.x, 2012.
Haerens, P., Bolle, A., Trouw, K., and Houthuys, R.: Definition of storm thresholds for significant morphological change of the sandy beaches along the Belgian coastline, Geomorphology, 143–144, 104–117, https://doi.org/10.1016/j.geomorph.2011.09.015, 2012.
Hallet, B.: Spatial self-organization in geomorphology: from periodic bedforms and patterned ground to scale-invariant topography, Earth-Sci. Rev., 29, 57–75, https://doi.org/10.1016/0012-8252(0)90028-T, 1990.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, J. R. Stat. Soc. Ser. C Appl. Stat., 28, 100–108, https://doi.org/10.2307/2346830, 1979.
Hesp, P.: Foredunes and blowouts: initiation, geomorphology and dynamics, Geomorphology, 48, 245–268, https://doi.org/10.1016/S0169-555X(02)00184-8, 2002.
Hesp, P. A.: Morphology, dynamics and internal stratification of some established foredunes in southeast australia, Sediment. Geol., 55, 17–41, 1988.
Hesp, P. A.: The formation of shadow dunes, J. Sediment. Res., 51, 101–112, https://doi.org/10.1306/212F7C1B-2B24-11D7-8648000102C1865D, 1981.
Hesp, P. A.: Morphodynamics of incipient foredunes in NSW, Australia., in Eolian Sediments and Processes, edited by: Brookfield, M. E. and Ahlbrandt, T. S., 325–342, Elsevier, Amsterdam, 1983.
Hesp, P. A. and Smyth, T. A. G.: Nebkha flow dynamics and shadow dune formation, Geomorphology, 282, 27–38, https://doi.org/10.1016/j.geomorph.2016.12.026, 2017.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General Parametric Models, Biom. J., 50, 346–363, 2008.
Houser, C., Hapke, C., and Hamilton, S.: Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms, Geomorphology, 100, 223–240, https://doi.org/10.1016/j.geomorph.2007.12.007, 2008.
Isenburg, M.: LAStools – efficient LiDAR processing software (version 160730, academic), available at: http://rapidlasso.com/LAStools (30 July 2016), 2016.
Keijsers, J. G. S., Poortinga, A., Riksen, M. J. P. M., and Maroulis, J.: Spatio-Temporal Variability in Accretion and Erosion of Coastal Foredunes in the Netherlands: Regional Climate and Local Topography, PLoS ONE, 9, e91115, https://doi.org/10.1371/journal.pone.0091115, 2014.
Keijsers, J. G. S., De Groot, A. V., and Riksen, M. J. P. M.: Vegetation and sedimentation on coastal foredunes, Geomorphology, 228, 723–734, https://doi.org/10.1016/j.geomorph.2014.10.027, 2015.
Keijsers, J. G. S., De Groot, A. V., and Riksen, M. J. P. M.: Modeling the biogeomorphic evolution of coastal dunes in response to climate change, J. Geophys. Res. Earth Surf., 121, 1161–1181, https://doi.org/10.1002/2015JF003815, 2016.
Koch, E. W., Barbier, E. B., Silliman, B. R., Reed, D. J., Perillo, G. M., Hacker, S. D., Granek, E. F., Primavera, J. H., Muthiga, N., Polasky, S., Halpern, B. S., Kennedy, C. J., Kappel, C. V., and Wolanski, E.: Non-linearity in ecosystem services: temporal and spatial variability in coastal protection, Front. Ecol. Environ., 7, 29–37, https://doi.org/10.1890/080126, 2009.
Li, Z., Wu, S., Dale, J., Ge, L., He, M., Wang, X., Jin, J., Ma, R., Liu, J., and Li, W.: Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin, Xinjiang, China (I): non-vegetated, Front. Earth Sci. China, 2, 333–339, https://doi.org/10.1007/s11707-008-0019-8, 2008.
Lima, P. H. S. de, Janzen, J. G., and Nepf, H. M.: Flow patterns around two neighboring patches of emergent vegetation and possible implications for deposition and vegetation growth, Environ. Fluid Mech., 15, 881–898, https://doi.org/10.1007/s10652-015-9395-2, 2015.
Luo, W., Dong, Z., Qian, G., and Lu, J.: Near-wake flow patterns in the lee of adjacent obstacles and their implications for the formation of sand drifts: A wind tunnel simulation of the effects of gap spacing, Geomorphology, 213 (Supplement C), 190–200, https://doi.org/10.1016/j.geomorph.2014.01.008, 2014.
MacQueen, J.: Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, edited by: Le Cam, L. M. and Neyman, J., 281–297, University of California Press, Berkeley, US, available at: http://projecteuclid.org/euclid.bsmsp/1200512992 (last access: 2 February 2017), 1967.
Martínez, M. L. and Psuty, N. P.: Coastal Dunes: Ecology and Conservation, Springer-Verslag, Berlin, Heidelberg, Germany, 386 pp., 2008.
Maun, M. A.: The Biology of Coastal Sand Dunes, Oxford University Press, New York, USA, 280 pp., 2009.
Montreuil, A.-L., Bullard, J. E., Chandler, J. H., and Millett, J.: Decadal and seasonal development of embryo dunes on an accreting macrotidal beach: North Lincolnshire, UK, Earth Surf. Process. Landf., 38, 1851–1868, https://doi.org/10.1002/esp.3432, 2013.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: nlme: Linear and Nonlinear Mixed Effects models, available at: http://CRAN.R-project.org/package=nlme, 2016.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.r-project.org, 2016.
Ruggiero, P., Holman, R. A., and Beach, R. A.: Wave run-up on a high-energy dissipative beach, J. Geophys. Res.-Ocean., 109, C06025, https://doi.org/10.1029/2003JC002160, 2004.
Saye, S. E., van der Wal, D., Pye, K., and Blott, S. J.: Beach–dune morphological relationships and erosion/accretion: An investigation at five sites in England and Wales using LIDAR data, Geomorphology, 72, 128–155, https://doi.org/10.1016/j.geomorph.2005.05.007, 2005.
Seabloom, E. W., Ruggiero, P., Hacker, S. D., Mull, J., and Zarnetske, P.: Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems., Glob Chane Biol., 19, 824–832, https://doi.org/10.1111/gcb.12078, 2013.
Shao, Y. and Raupach, M. R.: The overshoot and equilibration of saltation, J. Geophys. Res., 97, 20559–20564, 1992.
Silva, R., Martínez, M. L., Odériz, I., Mendoza, E., and Feagin, R. A.: Response of vegetated dune–beach systems to storm conditions, Coast. Eng., 109, 53–62, https://doi.org/10.1016/j.coastaleng.2015.12.007, 2016.
Suomalainen, J., Anders, N., Iqbal, S., Roerink, G., Franke, J., Wenting, P., Hünniger, D., Bartholomeus, H., Becker, R., and Kooistra, L.: A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles, Remote Sens., 6, 11013–11030, https://doi.org/10.3390/rs61111013, 2014.
van Puijenbroek, M. E. B., Limpens, J., De Groot, A. V., Riksen, M. J. P. M., Gleichman, M., Slim, P. A., van Dobben, H. F., and Berendse, F.: Embryo dune development drivers: beach morphology, Growing season precipitation, and storms, Earth Surf. Process. Landf., 42, 1733–1744, https://doi.org/10.1002/esp.4144, 2017.
van Puijenbroek, M. E. B., Nolet, C., de Groot, A. V., Suomalainen, J. M., Riksen, M. J. P. M., Berendse, F., and Limpens, J.: Supporting data for the publication: Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV)-imaging, Wageningen University and Research, https://doi.org/10.4121/uuid:81d426a2-30db-4328-bf04-40618bf31e4c, 2017.
Vellinga, P.: Beach and dune erosion during storm surges, Coast. Eng., 6, 361–387, https://doi.org/10.1016/0378-3839(82)90007-2, 1982.
Walker, I. J. and Nickling, W. G.: Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes, Prog. Phys. Geogr., 26, 47–75, https://doi.org/10.1191/0309133302pp325ra, 2002.
Westhoff, V., Bakker, P. A., van Leeuwen, C. G., and van der Voo, E. E.: Wilde planten, flora en vegetatie in onze natuurgebieden, Natuurmonumenten, 's-Graveland, the Netherlands, 318 pp., 1970.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Zarnetske, P. L., Hacker, S. D., Seabloom, E. W., Ruggiero, P., Killian, J. R., Maddux, T. B., and Cox, D.: Biophysical feedback mediates effects of invasive grasses on coastal dune shape., Ecology, 93, 1439–1450, 2012.
Short summary
Understanding the contribution of the vegetation and dune size to nebkha dune growth could improve model predictions on coastal dune development. We monitored a natural nebkha dune field with a drone with camera. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation. In our study area the growth of exposed dunes was restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply.
Understanding the contribution of the vegetation and dune size to nebkha dune growth could...
Altmetrics
Final-revised paper
Preprint