Articles | Volume 14, issue 4
https://doi.org/10.5194/bg-14-941-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-941-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea
Department of Marine Science and Convergence Engineering, Hanyang
University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, South Korea
Sung-Han Kim
Department of Marine Science and Convergence Engineering, Hanyang
University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, South Korea
Jin-Sook Mok
Department of Marine Science and Convergence Engineering, Hanyang
University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, South Korea
Hyeyoun Cho
Department of Marine Science and Convergence Engineering, Hanyang
University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, South Korea
Tongsup Lee
Department of Oceanography, Pusan National University, 2
Busandaehak-ro, Busan, 46241, South Korea
Verona Vandieken
Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg,
Germany
Bo Thamdrup
CORRESPONDING AUTHOR
Nordic Center for Earth Evolution, Department of Biology, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
Cited articles
Aller, R. C.: Bioturbation and manganese cycling in hemipelagic sediments, Philos. T. R. Soc. Lond. A, 331, 51–68, 1990.
Aller, R. C., Hall, P. O. J., Rude, P. D., and Aller, J. Y.: Biogeochemical heterogeneity and suboxic diagenesis in hemipelagic sediments of the Panama Basin, Deep-Sea Res. Pt. I, 45, 133–165, 1998.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation shelf and slope: A comparison of in situ microelectrode and chamber flux measurements, Limnol. Oceanogr., 37, 614–629, 1998.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1249, 1994.
Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., and Hinrichs, K. U.: Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities, Science, 344, 889–891, 2014.
Burdige, D. J. and Nealson, K. H.: Chemical and microbiological studies of sulfide-mediated manganese reduction, Geomicrobiol. J., 4, 361–387, 1986.
Canfield, D. E., Jørgensen, B. B., Fossing, H., Glud, R., Gundersen, J., Rasing, N. B., Thamdrup, B., Hansen, J. W., Nielsen, L. P., and Hall, P. O. J.: Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113, 27–40, 1993a.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction, Geochim. Cosmochim. Ac., 57, 3867–3883, 1993b.
Canfield, D. E., Thamdrup, B., and Kristensen, E. (Eds.): Aquatic geomicrobiology, Elsevier, San Diego, 640 pp., 2005.
Cha, H. J.: Geochemistry of surface sediments and diagenetic redistribution of phosphorus in the southwestern East Sea, PhD thesis, Seoul National Univ., Seoul, Korea, 190 pp., 2002.
Cha, H. J., Lee, C. B., Kim, B. S., Choi, M. S., and Ruttenberg, K. C.: Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea), Mar. Geol., 216, 127–143, 2005.
Cha, H. J., Choi, M. S., Lee, C.-B., and Shin, D.-H.: Geochemistry of surface sediments in the southwestern East/Japan Sea, J. Asian Earth Sci., 29, 685–697, 2007.
Choi, Y. J., Kim, D. S., Lee, T. H., and Lee, C. B.: Estimate of manganese and iron oxide reduction rates in slope and basin sediments of Ulleung Basin, East Sea, J. Korean Soc. Oceanogr., 14, 127–133, 2009.
Chough, S. K., Lee, H. J., and Yoon, S. H. (Eds.): Marine Geology of Korean Seas, 2nd Edn., Elsevier, Amsterdam, 2000.
Cline, J. D.: Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454–458, 1969.
D'Hondt, S., Inagaki, F., Zarikian, C. A., Abrams, L. J., Dubois, N., Engelhardt, T., Evans, H., Ferdelman, T., Gribsholt, B., Harris, R. N., Hoppie, B. W., Hyun, J.-H., Kallmeyer, j., Kim, J., Lynch, J. E., McKinley, C. C., Mitsunobu, S., Morono Y., Murray, R. W., Pockalny, R., Sauvage, J., Shimono, T., Shiraishi, F., Smith, D. C., Smith-Duque, C. E., Spivack, A. J., Steinsbu, B. O., Suzuki, Y., Szpak, M., Toffin, L., Uramoto, G., Yamaguchi, Y. T., Zhang, G.-I., Zhang, X.-H., and Ziebis, W.: Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments, Nat. Geosci., 8, 299–304, 2015.
Ferdelman, T. G., Fossing, H., Neumann, K., and Schulz, H. D.: Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15°38′ S and 27°57′ S (Angola and Namibia), Limnol. Oceanogr., 44, 650–661, 1999.
Fossing, H.: Sulfate reduction in shelf sediments in the upwelling region off Central Peru, Cont. Shelf Res., 10, 355–367, 1990.
Fossing, H. and Jørgensen, B. B.: Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method, Biogeochemistry, 8, 205–222, 1989.
Fossing, H., Ferdelman, T. G., and Berg, P.: Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia), Geochim. Cosmochim. Ac., 64, 897–910, 2000.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, 1979.
Gamo, T.: Dissolved oxygen in the bottom water of the Sea of Japan as a sensitive alarm for global climatic change, Trend Anal. Chem., 30, 1308–1319, 2011.
Gamo, T., Nakayama, N., Takahata, N., Sano, Y., Zhang, J., Yamazaki, E., Taniyasu, S., and Yamashita, N.: The Sea of Japan and its unique chemistry revealed by time-series observations over the last 30 Year, Monogr. Environ. Earth Planets, 2, 1–22, 2014.
Gingele, F. X. and Kasten, S.: Solid-phase manganese in Southeast Atlantic sediments Implications for the paleoenvironment, Mar. Geol., 121, 317–332, 1994.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4, 243–289, 2008.
Gobeil, C., Macdonald, R. W., and Sundby, B.: Diageneticseparation of cadmium and manganese in suboxiccontinental margin sediments, Geochim. Cosmochim. Ac., 61, 4647–4654, 1997.
Gribsholt, B., Kostka, J. E., and Kristensen, E.: Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh, Mar. Ecol.-Prog. Ser., 259, 237–251, 2003.
Haese, R. R., Schramm, J., Rutgers Van Der Loeff, M. M., and Schulz, H. D.: A comparative study of iron and manganese diagenesis in continental slope and deep sea basin sediments off Uruguay (SW Atlantic), Int. J. Earth Sci., 88, 619–629, 2000.
Hall, P. O. and Aller, R. C.: Rapid small-volume, flow injection analysis for CO2 and NH4+ in marine and freshwaters, Limnol. Oceanogr., 37, 113–119, 1992.
Hansen, C., Zabel, M., and Schulz, H. N.: Benthic cycling of oxygen, nitrogen, and phosphorus, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer-Verlag, Berlin, Heidelberg, NY, 207–240, 2006.
Hansen, J. W., Thamdrup, B., and Jørgensen, B. B.: Anoxic incubation of sediment in gas-tight plastic bags: a method for biochemical process studies, Mar. Ecol.-Prog. Ser., 208, 273–282, 2000.
Hines, M. E., Bzylinski, D. A., Tugel, J. B., and Lyons, W. B.: Anaerobic microbial biogeochemistry in sediments from two basins in the Gulf of Maine: evidence for iron and manganese reduction, Estuar. Coast. Shelf S., 32, 313–324, 1991.
Hyacinthe, C., Anschutz, P., Carbonel, P., Jouanneau, J.-M., Jorissen, F. J.: Early diagenetic processes in the muddy sediments of the Bay of Biscay, Mar. Geol., 177, 111–128, 2001.
Hyun, J.-H., Smith, A. C., and Kostka, J. E.: Relative contributions of sulfate- and iron(III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh, Appl. Geochem., 22, 2637–2651, 2007.
Hyun, J.-H., Kim, D., Shin, C.-W., Noh, J.-H., Yang, E.-J., Mok, J.-S., Kim, S.-H., Kim, H.-C., and Yoo, S.: Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea, Aquat. Microbiol. Ecol., 54, 45–54, 2009a.
Hyun, J.-H., Mok, J.-S., Cho, H.-Y., Kim, S.-H., and Kostka, J. E.: Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea, Biogeochemistry, 92, 231–245, 2009b.
Hyun, J.-H., Mok, J.-S., You, O.-R., Kim, D., and Choi, D. L.: Variations and controls of sulfate reduction in the continental slope and rise of the Ulleung basin off the southeast Korean upwelling system in the East Sea, Geomicrobiol. J., 27, 1–11, 2010.
Jahnke, R. A. and Jahnke, D. B.: Rates of C, N, P and Si recycling and denitrification at the US mid-Atlantic continental slope depocenter, Deep-Sea Res. Pt. I, 47, 1405–1428, 2000.
Jahnke, R. A., Emerson, S. R., and Murray, J. W.: A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments, Limnol. Oceanogr., 27, 610–623, 1982.
Jahnke, R. A., Reimers, C. E., and Craven, D. B.: Intensification of recycling of organic matter at the sea floor near ocean margins, Nature, 348, 50–54, 1990.
Jensen, M. M., Thamdrup, B., Rysgaard, S., Holmer, M., and Fossing, H.: Rates and regulation of microbial iron reduction in sediments of the Baltic–North Sea transition, Biogeochemistry, 65, 295–317, 2003.
Jørgensen, B. B.: A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, 1. Measurement with radiotracer techniques, Geomicrobiol. J., 1, 11–28, 1978.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed – the role of sulphate reduction, Nature, 296, 643–645, 1982.
Jørgensen, B. B.: Bacteria and marine biogeochemistry,in:Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer-Verlag, Berlin, Heidelberg, NY, 169–206, 2006.
Jørgensen, B. B. and Kasten, S.: Sulfur cycling and methane oxidation, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer-Verlag, Berlin, Heidelberg, NY, 271–309, 2006.
Jørgensen, B. B. and Revsbech, N. P.: Diffusive boundary layers and the oxygen uptake of sediments and detritus, Limnol. Oceanogr., 30, 111–122, 1985.
Kang, D. J., Lee, D. S., and Kim, K.-R.: The East Sea (Sea of Japan), in: Carbon and nutriet fuxes in continental margins, edited by: Liu, K.-K., Atkinson, L., Quiñones, R. A., and Talaue-MaManus, L., Springer-Verlag, Berlin, Heidelberg, 383–394, 2010.
Kim, D., Choi, M.-S., Oh, H.-Y., Kim, K. H., and Noh, J.-H.: Estimate of particulate organic carbon export flux using 234Th ∕ 238U disequilibrium in the southwestern East Sea during summer, (The Sea) J. Korean Soc. Oceanogr., 14, 1–9, 2009.
Kim, D., Yang, E. J., Kim, K. H., Shin, C.-W., Park, J., Yoo, S. J., and Hyun, J.-H.: Impact of an anticyclonic eddy on the summer nutrient and chlorophyll a distributions in the Ulleung Basin, East Sea (Japan Sea), ICES J. Mar. Sci., 69, 23–29, 2012.
Kim, K., Kim, K.-R., Min, D. H., Volkov, Y., Yoon, J.-H., and Takematsu, M.: Warming and structural changes in the East Sea (Japan) Sea: a clue to future changes in the global oceans?, Geophys. Res. Lett., 28, 3293–3296, 2001.
Kostka, J. E., Luther, G. W., and Nealson, K. H.: Chemical and biological reduction of Mn(III)-pyrophosphate complexes – potential importance of dissolved Mn(III) as an environmental oxidant, Geochim. Cosmochim. Ac., 59, 885–894, 1995.
Kostka, J. E., Thamdrup, B., Glud, R. N., and Canfield, D. E.: Rates and pathways of carbon oxidation in permanently cold Arctic sediments, Mar. Ecol.-Prog. Ser., 180, 7–21, 1999.
Kostka, J. E., Gribsholt, B., Petrie, E., Dalton, D., Skelton, H., and Kristensen, E.: The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments, Limnol. Oceanogr., 47, 230–240, 2002a.
Kostka, J. E., Roychoudhury, A., and Van Cappellen, P.: Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments, Biogeochemistry, 60, 49–76, 2002b.
Kwak, J. H., Hwang, J., Choy, E. J., Park, H. J., Kang, D.-J., Lee, T., Chang, K.-I., Kim, K.-R., and Kang, C.-K.: High primary productivity and f-ratio in summer in the Ulleung Basin of the East/Japan Sea, Deep-Sea Res. Pt. I, 79, 74–85, 2013.
Lee, J.: Importance of nitrate reduction in coastal and deep-sea sediments, MS thesis, Department of Marine Science Graduate School, Pusan National University, Korea, 86 pp., 2009.
Lee, T., Hyun, J.-H., Mok, J. S., and Kim, D.: Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung basin, East/Japan Sea, Geo.-Mar. Lett., 28, 153–159, 2008.
Li, Y. H. and Gregory, S.: Diffusion of ions in sea water and deep sea sediments, Geochim. Cosmochim. Ac., 38, 703–714, 1974.
Liu, K.-K., Atkinson, L., Quiñones, R. A., and Talaue-MaManus, L.: Biogeochemistry of the continental margins, in: Carbon and nutriet fuxes in continental margins, edited by: Liu, K.-K., Atkinson, L., Quiñones, R. A., and Talaue-MaManus, L., Springer-Verlag, Berlin, Heidelberg, 3–24, 2010.
Lovley, D. R. and Phillips, E. J. P.: Manganese inhibition of microbial iron reduction in anaerobic sediments, Geomicrobiol. J., 6, 145–155, 1988.
Luther III, G. W.: Acid volatile sulfide – A comment, Mar. Chem., 97, 198–205, 2005.
Macdonald, R. W. and Gobeil, C.: Manganese sources andsinks in the Arctic Oceanwith reference to periodicenrichments in basin sediments, Aquat. Geochem., 18, 565–591, 2012.
Madison, S., Tebo, B. M., Mucci, A., Sundby, B., and Luther III, G. W.: Abundant porewater Mn(III) is a major component of the sedimentary redox system, Science, 341, 875–878, 2013.
Magen, C., Mucci, A., and Sundby, B.: Reduction rates of sedimentary Mn and Fe oxides: an incubation experiment with Arctic Ocean sediments, Aquat. Biogeochem., 17, 629–643, 2011.
Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., and Kappler, A.: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle, Nat. Rev. Microbiol., 12, 797–808, 2014.
Mewes, K., Mogollón, J. M., Picard, A., Rühlemann, C., Kuhn, T., Nöthen, K., and Kasten, S.: Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone, Deep-Sea Res. Pt. I, 91, 125–141, 2014.
Mewes, K., Mogollón, J. M., Picard, A., Rühlemann, C., Eisenhauer, A., Kuhn, T., Ziebis, W., and Kasten, S.: Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion-Clipperton Fracture Zone, Earth Planet. Sc. Lett., 433, 215–225, 2016.
Meyers, C. and Nealson, K. H.: Microbial reduction of manganese oxides: Interactions with iron and sulfur, Geochim. Cosmochim. Ac., 52, 2727–2732, 1988.
Mogollón, J. M., Mewes, K., and Kasten, S.: Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: examples from the Clarion-Clipperton fracture zone, Geophys. Res. Lett., 43, 7114–7123, https://doi.org/10.1002/2016GL069117, 2016.
Mouret, A., Anschutz, P., Lecroart, P., Chaillou, G., Hyacinthe, C., Deborde, J., Jorissen, F., Deflandre, B., Schmidt, S., and Jouanneau, J.-M.: Benthic geochemistry of manganese inthe Bayof Biscay, and sediment mass accumulation rate, Geo.-Mar. Lett. 29, 133–149, 2009.
Murray, J. W., Balistrieri, L. S., and Paul, B.: The oxidation stateof manganese in marinesediments and ferromanganesenodules, Geochim. Cosmochim. Ac., 48, 1237–1247, 1984.
Nickel, M., Vandieken, V., Brüchert, V., and Jørgensen, B. B.: Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition, Deep-Sea Res. Pt. II, 55, 2390–2398, 2008.
Parsons, T. R., Maita, Y., and Lalli, C. M. (Eds.): A manual of chemical and biological methods for seawater analysis, Pergamon Press, Oxford, 173 pp., 1984.
Phillips, E. J. P. and Lovley, D. R.: Determination of Fe(III) and Fe(II) in oxalate extracts of sediment, Soil Sci. Soc. Am. J., 51, 938–941, 1987.
Postma, D.: Concentration of Mn and separation from Fe in sediments – I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C, Geochim. Cosmochim. Ac., 49, 1023–1033, 1985.
Pyzik, A. E. and Sommer, S. E.: Sedimentary iron monosulfide: kinetics and mechanisms of formation, Geochim. Cosmochim. Ac., 45, 687–698, 1981.
Rasmussen, H. and Jørgensen, B. B.: Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion, Mar. Ecol.-Prog. Ser., 81, 289–303, 1992.
Rickard, D. and Morse, J. W.: Acid volatile sulfur (AVS), Mar. Chem., 97, 141–107, 2005.
Romankevich, E. A.: Geochemistry of organicmatter in the ocean, Springer-Verlag, Berlin, Heidelberg, NY, Tokyo, 334 pp., 1984.
Schaller, T. and Wehrli, B.: Geochemical-focusing of manganese in lake sediments – An indicator of deep-water oxygen conditions, Aquat. Geochem., 2, 359–378, 1997.
Schulz, H. D.: Qunatification of early diagenesis: dissolved constituents in marine pore water, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer-Verlag, Berlin, Heidelberg, NY, 169–206, 2006.
Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., and Gustafsson, B. G.: Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal bsin and the impact of anaerobic oxidation of methane, PLoS ONE, 8, e62386, https://doi.org/10.1371/journal.pone.0062386, 2013.
Sørensen, J. W. and Jørgensen, B. B.: Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry, Geochim. Cosmochim. Ac., 51, 1583–1590, 1987.
Sørensen, J. W., Jørgensen, B. B., and Revsbech, N. P.: A comparison of oxygen, nitrate and sulfate respiration in a coastal marine sediment, Microbiol. Ecol., 5, 105–115, 1979.
Stookey, L. L.: Ferrozine – a new spectrophotometric reagent for iron, Anal. Chem., 42, 779–781, 1970.
Sundby, B. and Silverberg, N.: Manganese fluxes in the benthic boundary layer, Limnol. Oceanogr., 30, 372–381, 1985.
Thamdrup, B.: Bacterial manganese and iron reduction in aquatic sediments, Adv. Microb. Ecol., 16, 41–84, 2000.
Thamdrup, B. and Canfield, D. E.: Pathways of carbon oxidation in continental margin sediments off central Chile, Limnol. Oceanogr., 41, 1629–1650, 1996.
Thamdrup, B. and Dalsgaard, T.: The fate of ammonium in anoxic manganese oxide-rich marine sediment, Geochim. Cosmochim. Ac., 64, 4157–4164, 2000.
Thamdrup, B., Rosselló-Mora, R., and Amann, R.: Microbial manganese and sulfate reduction in Black Sea shelf sediments, Appl. Environ. Microbiol., 66, 2888–2897, 2000.
Trimmer, M. and Engström, P.: Distribution, activity, and ecology of anammox bacteria in aquatic environments, in: Nitrification, edited by: Ward, B. B., Arp, D. J., and Klotz, M. G., ASM Press, Washington, DC, 201–235, 2011.
Trimmer, M., Engström, P., and Thamdrup, B.: Stark contrast in denitrification and anammox across the deep Norwegian Trench in the Skagerrak, Appl. Environ. Microbiol., 79, 7381–7389, 2013.
Vandieken, V., Nickel, M., and Jørgensen, B. B.: Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways, Mar. Ecol.-Prog. Ser., 322, 15–27, 2006.
Vandieken, V., Pester, M., Finke, N., Hyun, J.-H., Friedrich, M. W., Loy, A., and Thamdrup, B.: Identification of acetate-oxidizing manganese-reducing bacteria in three manganese oxide-rich marine sediments by stable isotope probing, ISME J., 6, 2078–2090, 2012.
Vandieken, V., Finke, N., and Thamdrup, B.: Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment, FEMS Micribiol Ecol., 87, 733–745, 2014.
Walsh, J. J.: Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen, Nature, 350, 53–55, 1991.
Yamada, K., Ishizaka, J., and Nagata, H.: Spatial and temporal variability of satellite primary production in the Japan Sea from 1998 to 2002, J. Oceanogr., 61, 857–869, 2005.
Yin, J. H., Kajiwara, Y., and Fujii, T.: Distribution of transition elements in surface sediments of the southwestern margin of Japan Sea, Geochem. J., 23, 161–180, 1989.
Yoo, S. and Park, J. S.: Why is the southwest the most productive region of the East Sea/Sea of Japan?, J. Marine Syst., 78, 301–315, 2009.
Short summary
The surface sediments of the Ulleung Basin (UB) in the East Sea are characterized by high organic carbon contents (> 2.5 %, dry wt.) and very high concentrations of Mn oxides (> 200 μmol cm−3) and Fe oxides (up to 100 μmol cm−3). For the first time in deep offshore sediments on the Asian margin with water depth over 2000 m, we report that Mn reduction and Fe reduction were the dominant organic carbon (Corg) oxidation pathways, comprising 45 % and 20 % of total Corg oxidation, respectively.
The surface sediments of the Ulleung Basin (UB) in the East Sea are characterized by high...
Altmetrics
Final-revised paper
Preprint