Articles | Volume 15, issue 6
https://doi.org/10.5194/bg-15-1663-2018
https://doi.org/10.5194/bg-15-1663-2018
Research article
 | 
21 Mar 2018
Research article |  | 21 Mar 2018

High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

Matthias B. Siewert

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (30 Nov 2017) by Susan Natali
AR by Matthias Siewert on behalf of the Authors (11 Jan 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (20 Jan 2018) by Susan Natali
RR by Anonymous Referee #1 (31 Jan 2018)
ED: Publish as is (13 Feb 2018) by Susan Natali
AR by Matthias Siewert on behalf of the Authors (15 Feb 2018)
Download
Short summary
Large amounts of soil organic carbon are stored in the circumpolar permafrost region. This article aims to improve how we map this carbon. Typically the amount of soil organic carbon is estimated using soil or land cover maps. Here the amount of carbon is modeled using machine learning. This is done at a very fine spatial resolution of 1 × 1 m. This reveals a lot of small-scale landscape variability and underlines the importance of permafrost-related landforms vulnerable to a warming climate.
Altmetrics
Final-revised paper
Preprint