Articles | Volume 15, issue 10
https://doi.org/10.5194/bg-15-3243-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-15-3243-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate and marine biogeochemistry during the Holocene from transient model simulations
Joachim Segschneider
CORRESPONDING AUTHOR
Institute of Geosciences, Christian-Albrechts University of Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
Birgit Schneider
Institute of Geosciences, Christian-Albrechts University of Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
Vyacheslav Khon
Institute of Geosciences, Christian-Albrechts University of Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
now at: GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Birgit Gaye, Anna Böll, Joachim Segschneider, Nicole Burdanowitz, Kay-Christian Emeis, Venkitasubramani Ramaswamy, Niko Lahajnar, Andreas Lückge, and Tim Rixen
Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, https://doi.org/10.5194/bg-15-507-2018, 2018
Short summary
Short summary
The Arabian Sea has one of the most severe oxygen minima of the world's oceans between about 100 and 1200 m of water depth and is therefore a major oceanic nitrogen sink. Stable nitrogen isotopic ratios in sediments record changes in oxygen concentrations and were studied for the last 25 kyr. Oxygen concentrations dropped at the end of the last glacial and became further reduced during the Holocene, probably due to the increasing age of the low-oxygen water mass.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
W. Koeve, O. Duteil, A. Oschlies, P. Kähler, and J. Segschneider
Geosci. Model Dev., 7, 2393–2408, https://doi.org/10.5194/gmd-7-2393-2014, https://doi.org/10.5194/gmd-7-2393-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Birgit Gaye, Anna Böll, Joachim Segschneider, Nicole Burdanowitz, Kay-Christian Emeis, Venkitasubramani Ramaswamy, Niko Lahajnar, Andreas Lückge, and Tim Rixen
Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, https://doi.org/10.5194/bg-15-507-2018, 2018
Short summary
Short summary
The Arabian Sea has one of the most severe oxygen minima of the world's oceans between about 100 and 1200 m of water depth and is therefore a major oceanic nitrogen sink. Stable nitrogen isotopic ratios in sediments record changes in oxygen concentrations and were studied for the last 25 kyr. Oxygen concentrations dropped at the end of the last glacial and became further reduced during the Holocene, probably due to the increasing age of the low-oxygen water mass.
Anne Dallmeyer, Martin Claussen, Jian Ni, Xianyong Cao, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav Khon, Sebastian Wagner, Kerstin Haberkorn, and Ulrike Herzschuh
Clim. Past, 13, 107–134, https://doi.org/10.5194/cp-13-107-2017, https://doi.org/10.5194/cp-13-107-2017, 2017
Short summary
Short summary
The vegetation distribution in eastern Asia is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient climate simulations.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
A. Dallmeyer, M. Claussen, N. Fischer, K. Haberkorn, S. Wagner, M. Pfeiffer, L. Jin, V. Khon, Y. Wang, and U. Herzschuh
Clim. Past, 11, 305–326, https://doi.org/10.5194/cp-11-305-2015, https://doi.org/10.5194/cp-11-305-2015, 2015
W. Koeve, O. Duteil, A. Oschlies, P. Kähler, and J. Segschneider
Geosci. Model Dev., 7, 2393–2408, https://doi.org/10.5194/gmd-7-2393-2014, https://doi.org/10.5194/gmd-7-2393-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
M. Sarnthein, B. Schneider, and P. M. Grootes
Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, https://doi.org/10.5194/cp-9-2595-2013, 2013
A. Regenberg, B. Schneider, and R. Gangstø
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11343-2013, https://doi.org/10.5194/bgd-10-11343-2013, 2013
Revised manuscript not accepted
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Related subject area
Paleobiogeoscience: Climate Connection
The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin
Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises
Investigating controls of shell growth features in a foundation bivalve species: seasonal trends and decadal changes in the California mussel
Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr
What was the source of the atmospheric CO2 increase during the Holocene?
Plant functional diversity affects climate–vegetation interaction
High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea
Low Florida coral calcification rates in the Plio-Pleistocene
Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons
Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology
Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)
An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations
Evidence from "Köppen signatures" of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling
Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation
Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions
An analysis of the contrasting fates of locust swarms on the plains of North America and East Asia
Process based model sheds light on climate sensitivity of Mediterranean tree-ring width
A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Kunio Kaiho
Biogeosciences, 19, 3369–3380, https://doi.org/10.5194/bg-19-3369-2022, https://doi.org/10.5194/bg-19-3369-2022, 2022
Short summary
Short summary
I found a good correlation between the mass extinction magnitudes of animals and surface temperature anomalies. The relation is good regardless of the difference between warming and cooling. Marine animals are more likely than tetrapods to become extinct under a habitat temperature anomaly. The extinction magnitudes are marked by abrupt global surface temperature anomalies and coincidental environmental changes associated with abrupt high-energy input by volcanism and impact.
Veronica Padilla Vriesman, Sandra J. Carlson, and Tessa M. Hill
Biogeosciences, 19, 329–346, https://doi.org/10.5194/bg-19-329-2022, https://doi.org/10.5194/bg-19-329-2022, 2022
Short summary
Short summary
The shell of the California mussel contains alternating dark and light calcium carbonate increments that record whether the shell was growing normally under optimal conditions (light) or slowly under sub-optimal conditions (dark). However, the timing and specific environmental controls of growth band formation have not been tested. We investigated these controls and found links between stable seawater temperatures and light bands and highly variable or extreme temperatures and dark bands.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, James S. Klaus, Kevin Helmle, and Janice M. Lough
Biogeosciences, 13, 4513–4532, https://doi.org/10.5194/bg-13-4513-2016, https://doi.org/10.5194/bg-13-4513-2016, 2016
Short summary
Short summary
We have analysed the rate of calcification of fossil reef corals. These measurements are important, because the rate of formation of the skeleton depends on the physical environment in which the corals lived. The rates of skeletal calcification of the fossils were approximately 50 % lower than they are in extant reef corals. This is a likely effect of high water temperatures and/or low carbonate saturation of the water – factors that will also affect coral growth by future global warming.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
T. Denk, G. W. Grimm, F. Grímsson, and R. Zetter
Biogeosciences, 10, 7927–7942, https://doi.org/10.5194/bg-10-7927-2013, https://doi.org/10.5194/bg-10-7927-2013, 2013
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
G. Yu, X. Ke, H. D. Shen, and Y. F. Li
Biogeosciences, 10, 1441–1449, https://doi.org/10.5194/bg-10-1441-2013, https://doi.org/10.5194/bg-10-1441-2013, 2013
R. Touchan, V. V. Shishov, D. M. Meko, I. Nouiri, and A. Grachev
Biogeosciences, 9, 965–972, https://doi.org/10.5194/bg-9-965-2012, https://doi.org/10.5194/bg-9-965-2012, 2012
A. Sluijs and H. Brinkhuis
Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, https://doi.org/10.5194/bg-6-1755-2009, 2009
Cited articles
Atwood, A., Wu, E., Frierson, D., Battisti, D., and Sachs, J.: Quantifying
Climate Forcings and Feedbacks over the Last Millennium in the CMIP5-PMIP3
Models, J. Clim., 29, 1161–1178, https://doi.org/10.1175/JCLI-D-15-0063.1,
2016. a
Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J.-M., Bigler,
M., Castellano, E., Cattani, O., Chappellaz, J. A., Dahl-Jensen, D.,
Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H.,
Flückiger, J., Hansson, M. E., Huybrechts, P., Jugie, G.,
Johnsen, S. J., Jouzel, J., Kaufmann, P. R., Kipfstuhl, S.,
Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A.,
Lorrain, R. D., Maggi, V., Masson-Delmotte, V., Miller, H.,
Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin,
F., Peel, D. A., Petit, J.-R., Raynaud, D., Ritz, C., Ruth, U.,
Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B.,
Steffensen, J. P., Stenni, B., Stocker, T. F., Tabacco, I., Udisti,
R., van de Wal, R. S. W., van den Broeke, M. R., Wilhelms, F.,
Winther, J.-G., Wolff, E. W., and Zucchelli, M.: Data from the EPICA
Dome C ice core EDC, https://doi.org/10.1594/PANGAEA.728149, supplement to:
Augustin, L. et al. (2004): Eight glacial cycles from an Antarctic ice
core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004. a, b
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model of
the global ocean including Fe, Si, P colimitations, Global Biogeochem.
Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003. a, b
Berger, A. and Loutre, M.: Insolation values for the climate of the last 10
million years, Quaternary Sci. Rev., 10, 297–317,
https://doi.org/10.1016/0277-3791(91)90033-Q, 1991. a
Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz,
E. B., Park, W., Latif, M., Böning, C. W., Madec, G., and Wallmann, K.:
Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean
acidification, Geophys. Res. Lett., 38, L08602, https://doi.org/10.1029/2011GL047222, 2011. a
Blaschek, M., Renssen, H., Kissel, C., and Thornalley, D.: Holocene North
Atlantic Overturning in an atmosphere-ocean-sea ice model compared to
proxy-based reconstructions, Paleoceanography, 30, 1503–1524,
https://doi.org/10.1002/2015PA002828, 2015. a, b, c, d
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M.,
Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and
Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century:
projections with CMIP5 models, Biogeosciences, 10, 6225–6245,
https://doi.org/10.5194/bg-10-6225-2013, 2013. a, b, c
Braconnot, P., Marzin, C., Grégoire, L., Mosquet, E., and Marti, O.:
Monsoon response to changes in Earth's orbital parameters: Comparisons
between simulations of the Eemian and of the Holocene, Clim. Past, 4,
281–294, https://doi.org/10.5194/cp-4-281-2008, 2008. a
Braconnot, P., Harrison, S., Kageyama, M., Bartlein, P., Masson-Delmotte, V.,
Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models
using paleoclimatic data, Nature Climate Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012. a
Brovkin, V., Lorenz, S., Jungclaus, J., Raddatz, T., Timmreck, C., Reick, C.,
Segschneider, J., and Six, K.: Sensitivity of a coupled climate-carbon cycle
model to large volcanic eruptions during the last millennium, Tellus B, 62,
674–681, 2010. a
Brovkin, V., Brücher, T., Kleinen, T., Zaehle, S., Joos, F., Roth, R.,
Spahni, R., Schmitt, J., Fischer, H., Leuenberger, M., Stone, E. J.,
Ridgwell, A., Chappellaz, J., Kehrwald, N., Barbante, C., Blunier, T., and
Dahl-Jensen, D.: Comparative carbon cycle dynamics of the present and last
interglacial, Quaternary Sci. Rev., 137, 15–32,
https://doi.org/10.1016/j.quascirev.2016.01.028, 2016. a, b, c
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum
zones in the tropical Pacific across CMIP5 models: mean state differences and
climate change trends, Biogeosciences, 12, 5429–5454,
https://doi.org/10.5194/bg-12-5429-2015, 2015. a
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J.,
Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider,
J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in
multi-model global warming projections, Biogeosciences, 10, 1849–1868, 2013. a, b, c
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G., Johnsen, S., Hansen,
A., and Balling, N.: Past Temperatures Directly from the Greenland Ice Sheet,
Science, 282, 268–271, 1998. a
Deutsch, C., Brix, H., Ito, T., Frenzel, H., and Thompson, L.: Climate-forced
variability of ocean hypoxia, Science, 333, 336–339,
https://doi.org/10.1126/science.1202422, 2011. a
Ducklow, H., Steinberg, D., and Buesseler, K.: Upper Ocean Carbon Export and
the Biological Pump, Oceanography, 14, 50–58, 2001. a
Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger,
M., Joos, F., Fischer, H., and Stocker, T.: Stable isotope constraints on
Holocene carbon cycle changes from an Antarctic ice core, Nature, 461,
507–510, https://doi.org/10.1038/nature08393, 2009. a
Emile-Geay, J., Cobb, K. M., Carre, M., Braconnot, P., Leloup, J., Zhou, Y.,
Harrison, S., Correge, T., McGregor, H., Collins, M., Driscoll, R., Elliot,
M., Schneider, B., and Tudhope, A.: Links between tropical Pacific seasonal,
interannual and orbital variability during the Holocene, Nat. Geosci.,
9, 168–173, https://doi.org/10.1038/NGEO2608, 2016. a, b, c, d
Fichefet, T. and Morales Maqueda, M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102,
12609–12646, 1997. a
Fischer, N. and Jungclaus, J. H.: Evolution of the seasonal temperature cycle
in a transient Holocene simulation: orbital forcing and sea-ice, Clim. Past, 7, 1139–1148, https://doi.org/10.5194/cp-7-1139-2011, 2011. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K.,
Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen
Saturation, edited by: Levitus, S., A. Mishonov, Technical Ed., NOAA Atlas
NESDIS 75, US Government Printing Office, Washington, DC, 2013. a, b, c, d
Gaye, B., Böll, A., Segschneider, J., Burdanowitz, N., Emeis, K.-C.,
Ramaswamy, V., Lahajnar, N., Lückge, A., and Rixen, T.:
Glacial-Interglacial changes and Holocene variations in Arabian Sea
denitrification, Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, 2017. a, b
Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O.:
Reconciling surface ocean productivity, export fluxes and sediment
composition in a global biogeochemical ocean model, Biogeosciences, 3,
521–537, https://doi.org/10.5194/bg-3-521-2006, 2006. a
Heinze, C., Maier-Reimer, E., and Winn, K.: Glacial pCO2 reduction by the
World Ocean: Experiments with the Hamburg carbon cycle model, Paleoceanography, 395–430,
6, 1991. a
Hoogakker, B. A. A., Chapman, M. R., McCave, I. N., Hillaire-Marcel, C.,
Ellison, C. R. W., Hall, I. R., and Telford, R. J.: Dynamics of North
Atlantic Deep Water masses during the Holocene, Paleoceanography, 26, PA4214,
https://doi.org/10.1029/2011PA002155, 2011. a
IPCC: Climate Change 2007, in: The Physical Science Basis – Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., and Manning, M.,
Cambridge Univ. Press, Cambridge, UK, 663–745, 2007. a
Jaccard, S. and Galbraith, E.: Large climate-driven changes of oceanic oxygen
concentrations during the last deglaciation, Nat. Geosci., 5, 151–156,
https://doi.org/10.1038/ngeo1352, 2012. a
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six,
K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J.,
Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch,
M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann,
H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle
variability over the last millennium, Clim. Past, 6, 723–737,
https://doi.org/10.5194/cp-6-723-2010, 2010. a
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific Oceans, Prog. Oceanogr.,
77, 331–350, 2008. a
Khon, V. C., Park, W., Latif, M., Mokhov, I. I., and Schneider, B.: Response
of the hydrological cycle to orbital and greenhouse gas forcing,
Geophys. Res. Lett., 37, L19705, https://doi.org/10.1029/2010GL044377, 2010. a
Khon, V. C., Park, W., Latif, M., Mokhov, I. I., and Schneider, B.: Tropical
circulation and hydrological cycle response to orbital forcing, Geophys.
Res. Lett., 39, L15708, https://doi.org/10.1029/2012GL052482, 2012. a
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia,
A. C. M., and Levrard, B.: A long-term numerical solution for the
insolation quantities of the Earth, Astron. Astrophys., 428,
261–285, https://doi.org/10.1051/0004-6361:20041335, 2004. a, b
Leduc, G., Schneider, R., Kim, J. H., and Lohmann, G.: Holocene and Eemian sea
surface temperature trends as revealed by alkenone and Mg ∕ Ca
paleothermometry, Quateranry Sci. Rev., 29, 989–1004,
https://doi.org/10.1016/j.quascirev.2010.01.1004, 2010. a, b
Lehner, F., Joos, F., Raible, C., Mignot, J., Born, A., Keller, K., and
Stocker, T.: Climate and carbon cycle dynamics in a CESM simulation from 850
to 2100 CE, Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015,
2015. a
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann,
A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.: The Holocene
temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111,
2014. a, b, c, d
Locarini, R., Mishonov, A. V., Antonov, J., Boyer, T., Garcia, H., Baranova,
O., Zweng, M., Paver, C., Reagan, J., Johnson, D., Hamilton, M., and Seidov,
D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S., A.
Mishonov, Technical Ed., NOAA Atlas NESDIS 73, 2013. a
Lorenz, S. J. and Lohmann, G.: Acceleration technique for Milankovitch type
forcing in a coupled atmosphere-ocean circulation model: method and
application for the Holocene, Clim. Dynam., 23, 727–743, 2004. a
Madec, G.: NEMO ocean engine, Note du Pôle de Modélisation 27, Inst.
Pierre – Simon Laplace, Paris, 2008. a
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model:
Preindustrial tracer distributions, Global Biogeochem. Cy., 7, 645–677,
1993. a
Maier-Reimer, E. and Hasselmann, K.: Transport and storage of CO2 in the
ocean – An inorganic ocean-circulation carbon cycle model, Clim. Dynam., 2,
63–90, 1987. a
Maier-Reimer, E., Mikolajewicz, U., and Hasselmann, K.: Mean Circulation of the
Hamburg LSG OGCM and its Sensitivity to the Thermohaline Surface Forcing,
J. Phys. Oceanogr., 23, 731–757, 1993. a
Maier-Reimer, E., Mikolajewicz, U., and Winguth, A.: Future ocean uptake of
CO2: Interaction between ocean circulation and biology, Clim. Dynam., 12,
711–721, 1996. a
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The HAMburg
Ocean Carbon Cycle model HAMOCC5.1 – Technical description Release 1.1,
Reports on Earth System Science 14, Max Planck Institute for Meteorology,
2005. a
Marchal, O., Cacho, I., Stocker, T. F., Grimalt, J. O., Calvo, E., Martrat, B.,
Shackleton, N., Vautravers, M., Cortijo, E., van Kreveld, S., Andersson, C.,
Ko, N., Chapman, M., Sbaffi, L., Duplessy, J.-C., Sarnthein, M., Turon,
J.-L., Duprat, J., and Jansen, E.: Apparent long-term cooling of the sea
surface in the northeast Atlantic and Mediterranean during the Holocene,
Quaternary Sci. Rev., 21, 455–483,
https://doi.org/10.1016/S0277-3791(01)00105-6, 2002. a
Marcott, S., Shakun, J. D., Clark, P., and Mix, A.: A reconstruction of
regional and global temperature for the past 11,300 years, Science, 339,
1189, https://doi.org/10.1126/science.1228026, 2013. a, b, c, d
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.:
VERTEX: carbon cycling in the northeast Pacific, Deep-Sea
Res., 34, 267–286, 1987. a
Matear, R. J. and Hirst, C.: Long-term changes in dissolved oxygen
concentrations in the ocean caused by protracted global warming, Global
Biogeochem. Cy., 17, 1125, https://doi.org/10.1029/2002GB001997, 2003. a, b
Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and
Hill, T. M.: Paleoceanographic Insights on Recent Oxygen Minimum Zone
Expansion: Lessons for Modern Oceanography, PLoS ONE, 10, e0115246,
https://doi.org/10.1371/journal.pone.0115246, 2015. a
PAGES 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797,
2013. a
Park, W. and Latif, M.: Multidecadal and Multicentennial Variability of the
Meridional Overturning Circulation, Geophys. Res. Lett., 35,
L22073, https://doi.org/10.1029/2008GL035779, 2008. a
Park, W., Keenlyside, N., Latif, M., Ströh, A., Redler, R., Roeckner, E.,
and Madec, G.: Tropical Pacific Climate and its Response to Global Warming
in the Kiel Climate Model, J. Clim., 22, 71–92,
https://doi.org/10.1175/2008JCLI2261.1, 2009. a
Renssen, H., Goosse, H., and Fichefet, T.: Contrasting trends in North Atlantic
deep-water formation in the Labrador Sea and Nordic Seas during the Holocene,
Geophys. Res. Lett., 32, L08711, https://doi.org/10.1029/2005GL022462,
2005. a, b
Renssen, H., Seppä, H., Heiri, O., Roche, D. M., Goosse, H., and Fichefet, T.: The
spatial and temporal complexity of the Holocene thermal maximum, Nat.
Geosci., 2, 411–414, https://doi.org/10.1038/ngeo513, 2009. a, b, c
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta,
M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A.,
Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general
circulation model ECHAM5, Part I: Model description, Report 349, Max Planck
Inst. for Meteorol., Hamburg, Germany, 2003. a
Salau, O. R., Schneider, B., Park, W., Khon, V., and Latif, M.: Modeling the
ENSO impact of orbitally induced mean state climate changes, J.
Geophys. Res.-Ocean., 117, C05043, https://doi.org/10.1029/2011JC007742, 2012. a
Salvatteci, R., Gutierrez, D., Sifeddine, A., Ortlieb, L., Druffel, E.,
Boussafir, M., and Schneider, R.: Centennial to millennial-scale changes in
oxygenation and productivity in the Eastern Tropical South Pacific during the
last 25 000 years, Quaternary Sci. Rev., 131, 102–117, 2016. a
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017. a, b
Schmittner, A., Galbraith, E., Hostetler, S., Pedersen, T., and Zhang, R.:
Large fluctuations of dissolved oxygen in the Indian and Pacific ocean during
Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep
Water subduction, Paleoceanography, 22, PA3207, https://doi.org/10.1029/2006PA001384,
2007. a, b
Segschneider, J. and Bendtsen, J.: Temperature-dependent remineralization in a
warming ocean increases surface pCO2 through changes in marine ecosystem
composition, Global Bigeochem. Cy., 27, 1214–1225,
https://doi.org/10.1002/2013GB004684, 2013. a
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V.,
Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and
Segschneider, J.: Projected 21st century decrease in marine productivity: a
multi-model analysis, Biogeosciences, 7, 979–1005,
https://doi.org/10.5194/bg-7-979-2010, 2010. a
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen
minimum zones in the tropical oceans, Science, 320, 655–685, 2008. a
Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M.,
Renssen, H., Wagner, A., Wagner, S., and Schulz, M.: Holocene evolution of
the Southern Hemisphere westerly winds in transient simulations with global
climate models, Clim. Past, 8, 391–402, https://doi.org/10.5194/cp-8-391-2012, 2012. a
Vecsei, A. and Berger, W. H.: Increase of atmospheric CO2 during
deglaciation: Constraints on the coral reef hypothesis from patterns of
deposition, Global Biogeochem. Cy., 18, GB1035,
https://doi.org/10.1029/2003GB002147, 2004. a
Vieira, L., Solanki, S., Krivova, N., and Usoskin, I.: Evolution of the solar
irradiance during the Holocene, Astron. Astrophys., 531,
https://doi.org/10.1051/0004-6361/201015843, 2011. a
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
a, b, c, d, e
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
To gain a better understanding of climate and marine biogeochemistry variations over the last...
Altmetrics
Final-revised paper
Preprint