Received: 25 Jul 2017 – Discussion started: 06 Sep 2017 – Revised: 08 Dec 2017 – Accepted: 18 Dec 2017 – Published: 02 Feb 2018
Abstract. Plant carbon (C) content is one of the most important plant traits and is critical to the assessment of global C cycle and ecological stoichiometry; however, the global variations in plant C content remain poorly understood. In this study, we conducted a global analysis of the plant C content by synthesizing data from 4318 species to document specific values and their variation of the C content across plant organs and life forms. Plant organ C contents ranged from 45.0 % in reproductive organs to 47.9 % in stems at global scales, which were significantly lower than the widely employed canonical value of 50 %. Plant C content in leaves (global mean of 46.9 %) was higher than that in roots (45.6 %). Across life forms, woody plants exhibited higher C content than herbaceous plants. Conifers, relative to broad-leaved woody species, had higher C content in roots, leaves, and stems. Plant C content tended to show a decrease with increasing latitude. The life form explained more variation of the C content than climate. Our findings suggest that specific C content values of different organs and life forms developed in our study should be incorporated into the estimations of regional and global vegetation biomass C stocks.
Plant carbon (C) content is critical to the assessment of the global C cycle. Our results showed that the global average C contents in organs were significantly lower than a canonical value of 50 %. Plant C content tended to decrease with increasing latitude, and life form explained more variation than climate. Our findings suggest that specific C content values of different organs and life forms should be incorporated into the estimations of regional and global vegetation biomass C stocks.
Plant carbon (C) content is critical to the assessment of the global C cycle. Our results showed...