Articles | Volume 16, issue 12
https://doi.org/10.5194/bg-16-2443-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2443-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits
Planets and Comets, Max Planck Institute for Solar System Research,
37077 Göttingen, Germany
Department of Geobiology, Geoscience Centre, University of
Göttingen, 37077 Göttingen, Germany
Walter Goetz
Planets and Comets, Max Planck Institute for Solar System Research,
37077 Göttingen, Germany
Jan-Peter Duda
Department of Earth Sciences, University of California, Riverside, CA
92521, USA
Christine Heim
Department of Geobiology, Geoscience Centre, University of
Göttingen, 37077 Göttingen, Germany
Joachim Reitner
Department of Geobiology, Geoscience Centre, University of
Göttingen, 37077 Göttingen, Germany
Origin of Life Group, Göttingen Academy of Sciences and
Humanities, 37073 Göttingen, Germany
Volker Thiel
Department of Geobiology, Geoscience Centre, University of
Göttingen, 37077 Göttingen, Germany
Related authors
No articles found.
Wanli Xiang, Jan-Peter Duda, Andreas Pack, Mark van Zuilen, and Joachim Reitner
Biogeosciences, 21, 5653–5684, https://doi.org/10.5194/bg-21-5653-2024, https://doi.org/10.5194/bg-21-5653-2024, 2024
Short summary
Short summary
We investigated the formation of early Archean (~3.5–3.4 Ga) carbonates in the Pilbara Craton, Western Australia, demonstrating the presence of an oceanic crust, an organo-carbonate, and a microbial carbonate factory. Notably, (a)biotic organic matter and hydrothermal fluids were centrally involved in carbonate precipitation. Since carbonates were widespread in the Archean, they may have constituted major carbon sinks that modulated early Earth’s carbon cycle and, hence, climate system.
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020, https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Short summary
Today, sterols are widespread in plants, animals, and fungi but are almost absent in the oldest rocks. Microbial mats, representing the earliest complex ecosystems on Earth, were omnipresent in Precambrian marine environments and may have degraded the sterols at that time. Here we analyze the distribution of sterols through a microbial mat. This provides insight into how variations in biological and nonbiological factors affect the preservation of sterols in modern and ancient microbial mats.
Blanca Rincón-Tomás, Jan-Peter Duda, Luis Somoza, Francisco Javier González, Dominik Schneider, Teresa Medialdea, Esther Santofimia, Enrique López-Pamo, Pedro Madureira, Michael Hoppert, and Joachim Reitner
Biogeosciences, 16, 1607–1627, https://doi.org/10.5194/bg-16-1607-2019, https://doi.org/10.5194/bg-16-1607-2019, 2019
Short summary
Short summary
Cold-water corals were found at active sites in Pompeia Province (Gulf of Cádiz). Since seeped fluids are harmful for the corals, we approached the environmental conditions that allow corals to colonize carbonates while seepage occurs. As a result, we propose that chemosynthetic microorganisms (i.e. sulfide-oxidizing bacteria and AOM-related microorganisms) play an important role in the colonization of the corals at these sites by feeding on the seeped fluids and avoiding coral damage.
Beate Stawiarski, Stefan Otto, Volker Thiel, Ulf Gräwe, Natalie Loick-Wilde, Anna K. Wittenborn, Stefan Schloemer, Janine Wäge, Gregor Rehder, Matthias Labrenz, Norbert Wasmund, and Oliver Schmale
Biogeosciences, 16, 1–16, https://doi.org/10.5194/bg-16-1-2019, https://doi.org/10.5194/bg-16-1-2019, 2019
Short summary
Short summary
The understanding of surface water methane production in the world oceans is still poor. By combining field studies and incubation experiments, our investigations suggest that zooplankton contributes to subthermocline methane enrichments in the central Baltic Sea by methane production within the digestive tract of copepods and/or by methane production through release of methane precursor substances into the surrounding water, followed by microbial degradation to methane.
Sonja Geilert, Christian Hensen, Mark Schmidt, Volker Liebetrau, Florian Scholz, Mechthild Doll, Longhui Deng, Annika Fiskal, Mark A. Lever, Chih-Chieh Su, Stefan Schloemer, Sudipta Sarkar, Volker Thiel, and Christian Berndt
Biogeosciences, 15, 5715–5731, https://doi.org/10.5194/bg-15-5715-2018, https://doi.org/10.5194/bg-15-5715-2018, 2018
Short summary
Short summary
Abrupt climate changes in Earth’s history might have been triggered by magmatic intrusions into organic-rich sediments, which can potentially release large amounts of greenhouse gases. In the Guaymas Basin, vigorous hydrothermal venting at the ridge axis and off-axis inactive vents show that magmatic intrusions are an effective way to release carbon but must be considered as very short-lived processes in a geological sense. These results need to be taken into account in future climate models.
Alexander R. Schmidt, Dennis Grabow, Christina Beimforde, Vincent Perrichot, Jouko Rikkinen, Simona Saint Martin, Volker Thiel, and Leyla J. Seyfullah
Foss. Rec., 21, 213–221, https://doi.org/10.5194/fr-21-213-2018, https://doi.org/10.5194/fr-21-213-2018, 2018
Short summary
Short summary
Amber is fossilized resin and so has a terrestrial source; however, very rarely have marine microorganisms been reported, and only in a few amber pieces. We aim to understand how this rare phenomenon could be possible. Several different mechanisms were proposed, and we then tested the wind-blown idea via our experiments on resin-rich forests on the coast of New Caledonia. These forests encompass the best model for the Cretaceous ambers that contain these marine microorganisms.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
C. Berndmeyer, V. Thiel, O. Schmale, N. Wasmund, and M. Blumenberg
Biogeosciences, 11, 7009–7023, https://doi.org/10.5194/bg-11-7009-2014, https://doi.org/10.5194/bg-11-7009-2014, 2014
Short summary
Short summary
The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic, and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. Our study of in situ biomarkers in the Landsort Deep provides an integrated insight into the distribution of relevant compounds and describes useful tracers to reconstruct stratified water columns in the geological record.
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, and V. Thiel
Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, https://doi.org/10.5194/bg-10-2725-2013, 2013
O. Schmale, M. Blumenberg, K. Kießlich, G. Jakobs, C. Berndmeyer, M. Labrenz, V. Thiel, and G. Rehder
Biogeosciences, 9, 4969–4977, https://doi.org/10.5194/bg-9-4969-2012, https://doi.org/10.5194/bg-9-4969-2012, 2012
Related subject area
Paleobiogeoscience: Organic Biomarkers
Locally Produced Sedimentary Biomarkers in High-Altitude Catchments Outweigh Upstream River Transport in Sedimentary Archives
Comparison of paleobotanical and biomarker records of mountain peatland and forest ecosystem dynamics over the last 2600 years in central Germany
Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an)oxygenic phototrophic communities at Lake Cadagno, Swiss Alps
A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia
Human and livestock faecal biomarkers at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – potential and limitations
The influence of lateral transport on sedimentary alkenone paleoproxy signals
Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica
Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils
Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand
From leaf to soil: n-alkane signal preservation, despite degradation along an environmental gradient in the tropical Andes
Comparison of the U37K′, LDI, TEX86H, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea
Reconstructing N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- and 7-methylheptadecane in sediments as specific biomarkers
Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula
Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation
Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water
Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”
Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs
Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation
Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies
Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis
Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions
Biostratigraphic evidence for dramatic Holocene uplift of Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific Ocean
A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments
Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea
Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy – Part 1: The Araucariaceae family
Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany)
Occurrence and distribution of ladderane oxidation products in different oceanic regimes
Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes
Alex Brittingham, Michael T. Hren, Sam Spitzschuch, Phil Glauberman, Yonaton Goldsmith, Boris Gasparyan, and Ariel Malinsky-Buller
EGUsphere, https://doi.org/10.5194/egusphere-2024-724, https://doi.org/10.5194/egusphere-2024-724, 2024
Short summary
Short summary
Plant molecules, also called biomarkers, are a tool used for reconstructing climates in the past. In this study, we collected soils and stream sediments in a river catchment in Armenia in order to determine how these molecules move before deposition. We found that trees and grasses produce distinct biomarkers but these are not incorporated equally into stream sediments. Instead, biomarkers from deciduous trees overprint any upstream transport of grass biomarkers.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Paul D. Zander, Stefanie B. Wirth, Adrian Gilli, Sandro Peduzzi, and Martin Grosjean
Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, https://doi.org/10.5194/bg-20-2221-2023, 2023
Short summary
Short summary
This study shows, for the first time, that hyperspectral imaging can detect bacteriochlorophyll pigments produced by green sulfur bacteria in sediment cores. We tested our method on cores from Lake Cadagno, Switzerland, and were able to reconstruct high-resolution variations in the abundance of green and purple sulfur bacteria over the past 12 700 years. Climate conditions, flood events, and land use had major impacts on the lake’s biogeochemical conditions over short and long timescales.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Pierre Véquaud, Sylvie Derenne, Alexandre Thibault, Christelle Anquetil, Giuliano Bonanomi, Sylvie Collin, Sergio Contreras, Andrew T. Nottingham, Pierre Sabatier, Norma Salinas, Wesley P. Scott, Josef P. Werne, and Arnaud Huguet
Biogeosciences, 18, 3937–3959, https://doi.org/10.5194/bg-18-3937-2021, https://doi.org/10.5194/bg-18-3937-2021, 2021
Short summary
Short summary
A better understanding of past climate variations is essential to apprehend future climatic changes. The aim of this study is to investigate the applicability of specific organic compounds of bacterial origin, 3-hydroxy fatty acids (3-OH FAs), as temperature and pH proxies at the global level using an extended soil dataset. We show the major potential of 3-OH FAs as such proxies in terrestrial environments through the different models presented and their application for palaeoreconstruction.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
Wenjie Xiao, Yinghui Wang, Shangzhe Zhou, Limin Hu, Huan Yang, and Yunping Xu
Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, https://doi.org/10.5194/bg-13-5883-2016, 2016
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
S. Ding, Y. Xu, Y. Wang, Y. He, J. Hou, L. Chen, and J.-S. He
Biogeosciences, 12, 3141–3151, https://doi.org/10.5194/bg-12-3141-2015, https://doi.org/10.5194/bg-12-3141-2015, 2015
P. Sepúlveda, J. P. Le Roux, L. E. Lara, G. Orozco, and V. Astudillo
Biogeosciences, 12, 1993–2001, https://doi.org/10.5194/bg-12-1993-2015, https://doi.org/10.5194/bg-12-1993-2015, 2015
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
C. Zell, J.-H. Kim, M. Balsinha, D. Dorhout, C. Fernandes, M. Baas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, https://doi.org/10.5194/bg-11-5637-2014, 2014
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, and V. Thiel
Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, https://doi.org/10.5194/bg-10-2725-2013, 2013
Y. Lu, Y. Hautevelle, and R. Michels
Biogeosciences, 10, 1943–1962, https://doi.org/10.5194/bg-10-1943-2013, https://doi.org/10.5194/bg-10-1943-2013, 2013
M. Blumenberg and F. Wiese
Biogeosciences, 9, 4139–4153, https://doi.org/10.5194/bg-9-4139-2012, https://doi.org/10.5194/bg-9-4139-2012, 2012
D. Rush, E. C. Hopmans, S. G. Wakeham, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 9, 2407–2418, https://doi.org/10.5194/bg-9-2407-2012, https://doi.org/10.5194/bg-9-2407-2012, 2012
M. D. Wolhowe, F. G. Prahl, I. Probert, and M. Maldonado
Biogeosciences, 6, 1681–1694, https://doi.org/10.5194/bg-6-1681-2009, https://doi.org/10.5194/bg-6-1681-2009, 2009
Cited articles
Allen, J. E., Forney, F. W., and Markovetz, A. J.: Microbial subterminal
oxidation of alkanes and alk-1-enes, Lipids, 6, 448–452,
https://doi.org/10.1007/BF02531227, 1971.
Allwood, A. C., Walter, M. R., and Marshall, C. P.: Raman spectroscopy
reveals thermal palaeoenvironments of c.3.5 billion-year-old organic matter,
Vib. Spectrosc., 41, 190–197, https://doi.org/10.1016/j.vibspec.2006.02.006, 2006.
Baker, B. H.: Geology of the Magadi area, Geological Survey of Kenya, 81 pp., 1958.
Baker, B. H.: Tectonics and volcanism of the southern Kenya Rift Valley and
its influence on rift sedimentation, in: Sedimentation in the African Rifts,
edited by: Frostick, L. E., Renaut, R. W., Reid, I., and Tiercelin, J. J., Geol. Soc. Spec. Publ., London, UK, 45–57,
1986.
Banta, A. B., Wei, J. H., and Welander, P. V.: A distinct pathway for
tetrahymanol synthesis in bacteria, P. Natl. Acad. Sci. Usa, 112, 13478–13483, https://doi.org/10.1073/pnas.1511482112, 2015.
Barker, C. E. and Pawlewicz, M. J.: Calculation of Vitrinite Reflectance
from Thermal Histories and Peak Temperatures, in: Vitrinite Reflectance as a
Maturity Parameter, edited by: Mukhopadhyay, P. K. and Dow, W. G., Am.
Chem. Soc., Washington, DC, 216–229, 1994.
Becker, K. W., Elling, F. J., Yoshinaga, M. Y., Söllinger, A., Urich,
T., and Hinrichs, K.-U.: Unusual butane- and pentanetriol-based tetraether
lipids in Methanomassiliicoccus luminyensis, a representative of the seventh
order of methanogens, Appl. Environ. Microb., 82, 4505–4516, https://doi.org/10.1128/AEM.00772-16, 2016.
Behr, H.-J.: Magadiite and Magadi chert: a critical analysis of the silica
sediments in the Lake Magadi Basin, Kenya, in: Sedimentation in Continental
Rifts, edited by: Renaut, R. W. and Ashley, G. M., SEPM Spec. P., Tulsa,
Oklahoma, USA, 257–273, 2002.
Behr, H.-J. and Röhricht, C.: Record of seismotectonic events in
siliceous cyanobacterial sediments (Magadi cherts), Lake Magadi, Kenya, Int.
J. Earth Sci., 89, 268–283, https://doi.org/10.1007/s005319900070, 2000.
Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N.: Raman spectra of
carbonaceous material in metasediments: a new geothermometer, J. Metamorph.
Geol., 20, 859–871, https://doi.org/10.1046/j.1525-1314.2002.00408.x, 2002.
Birgel, D., Guido, A., Liu, X., Hinrichs, K.-U., Gier, S., and Peckmann, J.:
Hypersaline conditions during deposition of the Calcare di Base revealed
from archaeal di- and tetraether inventories, Org. Geochem., 77, 11–21, https://doi.org/10.1016/j.orggeochem.2014.09.002, 2014.
Bishop, A. N., Love, G. D., McAulay, A. D., Snape, C. E., and Farrimond, P.:
Release of kerogen-bound hopanoids by hydropyrolysis, Org. Geochem., 29,
989–1001, https://doi.org/10.1016/S0146-6380(98)00140-5, 1998.
Boreham, C. J., Crick, I. H., and Powell, T. G.: Alternative calibration of
the Methylphenanthrene Index against vitrinite reflectance: Application to
maturity measurements on oils and sediments, Org. Geochem., 12, 289–294, https://doi.org/10.1016/0146-6380(88)90266-5, 1988.
Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van
Kranendonk, M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V.:
Questioning the evidence for Earth's oldest fossils, Nature, 416, 76–81, https://doi.org/10.1038/416076a, 2002.
Brenna, B. L.: The Chemical, Physical, and Microbial Origins of Pleistocene
Cherts at Lake Magadi, Kenya Rift Valley, MSc thesis, Department of
Geological Sciences, University of Saskatchewan, Saskatoon, Canada, 158 pp., 2016.
Brocks, J. J., Buick, R., Logan, G. A., and Summons, R. E.: Composition and
syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount
Bruce Supergroup, Pilbara Craton, Western Australia, Geochim. Cosmochim.
Ac., 67, 4289–4319, https://doi.org/10.1016/S0016-7037(03)00208-4, 2003a.
Brocks, J. J., Love, G. D., Snape, C. E., Logan, G. A., Summons, R. E., and
Buick, R.: Release of bound aromatic hydrocarbons from late Archean and
Mesoproterozoic kerogens via hydropyrolysis, Geochim. Cosmochim. Ac., 67,
1521–1530, https://doi.org/10.1016/S0016-7037(02)01302-9, 2003b.
Campbell, K. A., Buddle, T. F., and Browne, P. R. L.: Late Pleistocene
siliceous sinter associated with fluvial, lacustrine, volcaniclastic and
landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand, T. R. S. E. Earth, 94, 485–501, https://doi.org/10.1017/S0263593300000833,
2003.
Chikaraishi, Y., Naraoka, H., and Poulson, S. R.: Hydrogen and carbon
isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and
CAM) and aquatic plants, Phytochemistry, 65, 1369–1381, https://doi.org/10.1016/j.phytochem.2004.03.036, 2004.
Clifton, C. G., Walters, C. C., and Simoneit, B. R. T.: Hydrothermal
petroleums from Yellowstone National Park, Wyoming, USA, Appl. Geochem.,
5, 169–191, https://doi.org/10.1016/0883-2927(90)90047-9, 1990.
Coates, R. C., Podell, S., Korobeynikov, A., Lapidus, A., Pevzner, P.,
Sherman, D. H., Allen, E. E., Gerwick, L., and Gerwick, W. H.:
Characterization of Cyanobacterial Hydrocarbon Composition and Distribution
of Biosynthetic Pathways, PLoS ONE, 9, e85140, https://doi.org/10.1371/journal.pone.0085140, 2014.
Cope, M. J. and Chaloner, W. G.: Fossil charcoal as evidence of past
atmospheric composition, Nature, 283, 647–649, https://doi.org/10.1038/283647a0, 1980.
Cranwell, P. A., Eglinton, G., and Robinson, N.: Lipids of aquatic organisms
as potential contributors to lacustrine sediments – II, Org. Geochem., 11,
513–527, https://doi.org/10.1016/0146-6380(87)90007-6, 1987.
Czochanska, Z., Sheppard, C. M., Weston, R. J., Woolhouse, A. D., and Cook,
R. A.: Organic geochemistry of sediments in New Zealand, Part I, A biomarker
study of the petroleum seepage at the geothermal region of Waiotapu,
Geochim. Cosmochim. Ac., 50, 507–515, https://doi.org/10.1016/0016-7037(86)90100-6, 1986.
Dawson, K. S., Freeman, K. H., and Macalady, J. L.: Molecular
characterization of core lipids from halophilic archaea grown under
different salinity conditions, Org. Geochem., 48, 1–8, https://doi.org/10.1016/j.orggeochem.2012.04.003, 2012.
De Rosa, M., Gambacorta, A., Nicolaus, B., Ross, H. N. M., Grant, W. D., and
Bu'Lock, J. D.: An Asymmetric Archaebacterial Diether Lipid from
Alkaliphilic Halophiles, J. Gen. Microbiol., 128, 343–348, https://doi.org/10.1099/00221287-128-2-343, 1982.
Des Marais, D. J., Cohen, Y., Nguyen, H., Cheatham, M., Cheatham, T., and
Munoz, E.: Carbon isotopic trends in the hypersaline ponds and microbial
mats at Guerrero Negro, Baja California Sur, Mexico: Implications for
Precambrian stromatolites, in: Microbial Mats: Physiological Ecology of
Benthic Microbial Communities, edited by: Cohen, Y. and Rosenberg, E.,
American Society for Microbiology, Washington, DC, USA, 191–203, 1989.
Djokic, T., Van Kranendonk, M. J., Campbell, K. A., Walter, M. R., and Ward,
C. R.: Earliest signs of life on land preserved in ca. 3.5 Ga hot spring
deposits, Nat. Commun., 8, e15263, https://doi.org/10.1038/ncomms15263, 2017.
Duda, J.-P., Van Kranendonk, M. J., Thiel, V., Ionescu, D., Strauss, H.,
Schäfer, N., and Reitner, J.: A Rare Glimpse of Paleoarchean Life:
Geobiology of an Exceptionally Preserved Microbial Mat Facies from the
3.4 Ga Strelley Pool Formation, Western Australia, PLoS ONE, 11, e0147629, https://doi.org/10.1371/journal.pone.0147629, 2016.
Duda, J.-P., Thiel, V., Bauersachs, T., Mißbach, H., Reinhardt, M., Schäfer,
N., Van Kranendonk, M. J., and Reitner, J.: Ideas and perspectives:
hydrothermally driven redistribution and sequestration of early Archaean
biomass – the “hydrothermal pump hypothesis”, Biogeosciences, 15, 1535–1548,
https://doi.org/10.5194/bg-15-1535-2018, 2018.
Durand, B.: Sedimentary organic matter and kerogen. Definition and
quantitative importance of kerogen, in: Kerogen: Insoluble Organic Matter
from Sedimentary Rocks, edited by: Durand, B., Editions Technip., Paris,
France, 13–34, 1980.
Eglinton, G. and Hamilton, R. J.: Leaf Epicuticular Waxes, Science, 156,
1322–1335, https://doi.org/10.1126/science.156.3780.1322 1967.
Eugster, H. P.: Hydrous Sodium Silicates from Lake Magadi, Kenya: Precursors
of Bedded Chert, Science, 157, 1177–1180, https://doi.org/10.1126/science.157.3793.1177,
1967.
Eugster, H. P.: Inorganic bedded cherts from the Magadi area, Kenya,
Contrib. Mineral. Petr., 22, 1–31, https://doi.org/10.1007/BF00388011, 1969.
Eugster, H. P.: Chemistry and origin of the brines of Lake Magadi, Kenya,
Mineral. Soc. Amer. Spec. Pap., 3, 213–235, 1970.
Eugster, H. P.: Lake Magadi, Kenya: a model for rift valley hydrochemistry
and sedimentation?, Geol. Soc. Spec. Publ., 25, 177–189, https://doi.org/10.1144/GSL.SP.1986.025.01.15,
1986.
Eugster, H. P. and Jones, B. F.: Gels Composed of Sodium-Aluminium
Silicate, Lake Magadi, Kenya, Science, 161, 160–163, https://doi.org/10.1126/science.161.3837.160, 1968.
Fairhead, J. D., Mitchell, J. G., and Williams, L. A. J.: New K∕Ar
Determinations on Rift Volcanics of S. Kenya and their Bearing on Age of
Rift Faulting, Nature Physical Science, 238, 66–69, https://doi.org/10.1038/physci238066a0,
1972.
Farrimond, P., Griffiths, T., and Evdokiadis, E.: Hopanoic acids in Mesozoic
sedimentary rocks: their origin and relationship with hopanes, Org.
Geochem., 33, 965–977, https://doi.org/10.1016/S0146-6380(02)00059-1, 2002.
French, K. L., Hallmann, C., Hope, J. M., Schoon, P. L., Zumberge, J. A.,
Hoshino, Y., Peters, C. A., George, S. C., Love, G. D., Brocks, J. J.,
Buick, R., and Summons, R. E.: Reappraisal of hydrocarbon biomarkers in
Archean rocks, P. Natl. Acad. Sci. USA, 112, 5915–5920, https://doi.org/10.1073/pnas.1419563112, 2015.
George, S. C. and Jardine, D. R.: Ketones in a Proterozoic dolerite sill,
Org. Geochem., 21, 829–839, https://doi.org/10.1016/0146-6380(94)90042-6, 1994.
Glikson, M., Duck, L. J., Golding, S. D., Hofmann, A., Bolhar, R., Webb, R.,
Baiano, J. C. F., and Sly, L. I.: Microbial remains in some earliest Earth
rocks: Comparison with a potential modern analogue, Precambrian Res., 164,
187–200, https://doi.org/10.1016/j.precamres.2008.05.002, 2008.
Goetz, C. and Hillaire-Marcel, C.: U-series disequilibria in early
diagenetic minerals from Lake Magadi sediments, Kenya: Dating potential,
Geochim. Cosmochim. Ac., 56, 1331–1341, https://doi.org/10.1016/0016-7037(92)90065-Q,
1992.
Golubic, S., Friedmann, E. I., and Schneider, J.: The lithobiontic
ecological niche, with special reference to microorganisms, J. Sediment.
Petrol., 51, 475–478, https://doi.org/10.1306/212F7CB6-2B24-11D7-8648000102C1865D, 1981.
Goñi, M. A. and Eglinton, T. I.: Stable carbon isotopic analyses of
lignin-derived CuO oxidation products by isotope ratio monitoring-gas
chromatography-mass spectrometry (irm-GC-MS), Org. Geochem., 24, 601–615, https://doi.org/10.1016/0146-6380(96)00052-6, 1996.
Grant, W. D., Pinch, G., Harris, J. E., De Rosa, M., and Gambacorta, A.:
Polar Lipids in Methanogen Taxonomy, J. Gen. Microbiol., 131, 3277–3286, https://doi.org/10.1099/00221287-131-12-3277, 1985.
Greenwood, P. F. and Summons, R. E.: GC–MS detection and significance of
crocetane and pentamethylicosane in sediments and crude oils, Org. Geochem.,
34, 1211–1222, https://doi.org/10.1016/S0146-6380(03)00062-7, 2003.
Hallmann, C., Friedenberger, H., Hause-Reitner, D., and Hoppert, M.: Depth
profiles of microbial colonization in sandstones, Geomicrobiol. J., 32,
365–379, https://doi.org/10.1080/01490451.2014.929762, 2015.
Hamilton-Brehm, S. D., Gibson, R. A., Green, S. J., Hopmans, E. C.,
Schouten, S., van der Meer, M. T. J., Shields, J. P., Sinninghe Damsté,
J. S., and Elkins, J. G.: Thermodesulfobacterium geofontis sp. nov., a
hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool,
Yellowstone National Park, Extremophiles, 17, 251–263, https://doi.org/10.1007/s00792-013-0512-1, 2013.
Harvey, H. R. and McManus, G. B.: Marine ciliates as a widespread source of
tetrahymanol and hopan-3β-ol in sediments, Geochim. Cosmochim. Ac.,
55, 3387–3390, https://doi.org/10.1016/0016-7037(91)90496-R, 1991.
Hautevelle, Y., Michels, R., Malartre, F., and Trouiller, A.: Vascular plant
biomarkers as proxies for palaeoflora and palaeoclimatic changes at the
Dogger/Malm transition of the Paris Basin (France), Org. Geochem., 37,
610–625, https://doi.org/10.1016/j.orggeochem.2005.12.010, 2006.
Hawkes, J. A., Rossel, P. E., Stubbins, A., Butterfield, D., Connelly, D.
P., Achterberg, E. P., Koschinsky, A., Chavagnac, V., Hansen, C. T., Bach,
W., and Dittmar, T.: Efficient removal of recalcitrant deep-ocean dissolved
organic matter during hydrothermal circulation, Nat. Geosci., 8, 856–860, https://doi.org/10.1038/ngeo2543, 2015.
Hawkes, J. A., Hansen, C. T., Goldhammer, T., Bach, W., and Dittmar, T.:
Molecular alteration of marine dissolved organic matter under experimental
hydrothermal conditions, Geochim. Cosmochim. Ac., 175, 68–85, https://doi.org/10.1016/j.gca.2015.11.025, 2016.
Hay, R. L.: Chert and its sodium-silicate precursors in sodium-carbonate
lakes of East Africa, Contrib. Mineral. Petr., 17, 255–274, https://doi.org/10.1007/BF00380740, 1968.
Hickman-Lewis, K., Cavalazzi, B., Foucher, F., and Westall, F.: Most ancient
evidence for life in the Barberton greenstone belt: Microbial mats and
biofabrics of the ∼3.47 Ga Middle Marker horizon, Precambrian
Res., 312, 45–67, https://doi.org/10.1016/j.precamres.2018.04.007, 2018.
Huber, R., Wilharm, T., Huber, D., Tricone, A., Burggraf, S., König, H.,
Reinhard, R., Rockinger, I., Fricke, H., and Stetter, K. O.: Aquifex
pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine
Hyperthermophilic Hydrogen-Oxidizing Bacteria, Syst. Appl. Microbiol., 15,
340–351, https://doi.org/10.1016/S0723-2020(11)80206-7, 1992.
Jahnke, L., Eder, W., Huber, R., Hope, J. M., Hinrichs, K.-U., Hayes, J. M.,
Des Marais, D. J., Cady, S. L., and Summons, R. E.: Signature Lipids and
Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic
Communities Compared with Those of Aquificales Representatives, Appl.
Environ. Microb., 67, 5179–5189, https://doi.org/10.1128/AEM.67.11.5179-5189.2001 2001.
Jones, B. and Renaut, R. W.: Formation of silica oncoids around geysers and
hot springs at El Tatio, northern Chile, Sedimentology, 44, 287–304, https://doi.org/10.1111/j.1365-3091.1997.tb01525.x, 1997.
Jones, B. and Renaut, R. W.: Impact of Seasonal Changes on the Formation
and Accumulation of Soft Siliceous Sediments on the Discharge Apron of
Geysir, Iceland Journal of Sedimentary Research, 80, 17–35, https://doi.org/10.2110/jsr.2010.008, 2010.
Jones, B., Renaut, R. W., Torfason, H., and Owen, R. B.: The geological
history of Geysir, Iceland: a tephrochronological approach to the dating of
sinter, J. Geol. Soc. London, 164, 1241–1252, https://doi.org/10.1144/0016-76492006-178, 2007.
Jones, B. F., Eugster, H. P., and Rettig, S. L.: Hydrochemistry of the Lake
Magadi basin, Kenya, Geochim. Cosmochim. Ac., 41, 53–72, https://doi.org/10.1016/0016-7037(77)90186-7, 1977.
Kambura, A. K., Mwirichia, R. K., Kasili, R. W., Karanja, E. N., Makonde, H.
M., and Boga, H. I.: Bacteria and Archaea diversity within the hot springs
of Lake Magadi and Little Magadi in Kenya, BMC Microbiol., 16, 1–12, https://doi.org/10.1186/s12866-016-0748-x, 2016.
Kemp, P., Lander, D. J., and Orpin, C. G.: The Lipids of the Rumen Fungus
Piromonas communis, J. Gen. Microbiol., 139, 27–37, https://doi.org/10.1099/00221287-130-1-27, 1984.
Killops, S. and Killops, V.: Introduction to Organic Geochemistry, 2nd ed.,
Blackwell Publishing, Oxford, UK, 2005.
Kleemann, G., Poralla, K., Englert, G., Kjøsen, H., Liaaen-Jensen, S.,
Neunlist, S., and Rohmer, M.: Tetrahymanol from the phototrophic bacterium
Rhodopseudomonas palustris: first report of a gammacerane triterpene from a
prokaryote, J. Gen. Microbiol., 136, 2551–2553, https://doi.org/10.1099/00221287-136-12-2551, 1990.
Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M.: Ether polar
lipids of methanogenic bacteria: structures, comparative aspects, and
biosyntheses, Microbiol. Mol. Biol. R., 57, 164–182, 1993.
Kolattukudy, P. E.: Biopolyester Membranes of Plants: Cutin and Suberin,
Science, 208, 990–1000, https://doi.org/10.1126/science.208.4447.990, 1980.
Konn, C., Charlou, J. L., Donval, J. P., Holm, N. G., Dehairs, F., and
Bouillon, S.: Hydrocarbons and oxidized organic compounds in hydrothermal
fluids from Rainbow and Lost City ultramafic-hosted vents, Chem. Geol., 258,
299–314, https://doi.org/10.1016/j.chemgeo.2008.10.034, 2009.
Konn, C., Charlou, J.-L., Donval, J.-P., and Holm, N. G.: Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction – gas chromatography – mass spectrometry. Case study: the Rainbow field (36∘ N, Mid-Atlantic Ridge), Geochem. Trans., 13, 1–19, https://doi.org/10.1186/1467-4866-13-8, 2012.
Krooss, B. M., Brothers, L., and Engel, M. H.: Geochromatography in
petroleum migration: a review, in: Petroleum Migration, edited by: England,
W. A., and Fleet, A. J., Geol. Soc. Spec. Publ., London, UK, 149–163, 1991.
Langworthy, T. A., Holzer, G., Zeikus, J. G., and Tornabene, T. G.: Iso- and
Anteiso-Branched Glycerol Diethers of the Thermophilic Anaerobe
Thermodesulfotobacterium commune, Syst. Appl. Microbiol., 4, 1–17, https://doi.org/10.1016/S0723-2020(83)80029-0, 1983.
Leif, R. N. and Simoneit, B. R. T.: Ketones in hydrothermal petroleums and
sediment extracts from Guaymas Basin, Gulf of California, Org. Geochem., 23,
889–904, https://doi.org/10.1016/0146-6380(95)00085-2, 1995.
Love, G. D., Snape, C. E., Carr, A. D., and Houghton, R. C.: Release of
covalently-bound alkane biomarkers in high yields from kerogen via catalytic
hydropyrolysis, Org. Geochem., 23, 981–986, https://doi.org/10.1016/0146-6380(95)00075-5,
1995.
Love, G. D., McAulay, A. D., and Snape, C. E.: Effect of Process Variables
in Catalytic Hydropyrolysis on the Release of Covalently Bound Aliphatic
Hydrocarbons from Sedimentary Organic Matter, Energy Fuels, 11, 522–531, https://doi.org/10.1021/ef960194x, 1997.
Luque, F. J., Ortega, L., Barrenechea, J. F., Millward, D., Beyssac, O., and
Huizenga, J.-M.: Deposition of highly crystalline graphite from
moderate-temperature fluids, Geology, 37, 275–278, https://doi.org/10.1130/G25284A.1, 2009.
Mallory, F. B., Gordon, J. T., and Conner, R. L.: The isolation of a
pentacyclic triterpenoid alcohol from a protozoan, J. Am. Chem. Soc., 85,
1362–1363, 1963.
Marshall, C. P., Love, G. D., Snape, C. E., Hill, A. C., Allwood, A. C.,
Walter, M. R., Van Kranendonk, M. J., Bowden, S. A., Sylva, S. P., and
Summons, R. E.: Structural characterization of kerogen in 3.4 Ga Archaean
cherts from the Pilbara Craton, Western Australia, Precambrian Res., 155,
1–23, https://doi.org/10.1016/j.precamres.2006.12.014, 2007.
McCollom, T. M. and Seewald, J. S.: Experimental study of the hydrothermal
reactivity of organic acids and acid anions: II. Acetic acid, acetate, and
valeric acid, Geochim. Cosmochim. Ac., 67, 3645–3664, https://doi.org/10.1016/S0016-7037(03)00135-2, 2003.
McCollom, T. M., Seewald, J. S., and German, C. R.: Investigation of
extractable organic compounds in deep-sea hydrothermal vent fluids along the
Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 156, 122–144, https://doi.org/10.1016/j.gca.2015.02.022, 2015.
Meredith, W., Russell, C. A., Cooper, M., Snape, C. E., Love, G. D., Fabbri,
D., and Vane, C. H.: Trapping hydropyrolysates on silica and their
subsequent thermal desorption to facilitate rapid fingerprinting by GC–MS,
Org. Geochem., 35, 73–89, https://doi.org/10.1016/j.orggeochem.2003.07.002, 2004.
Meredith, W., Snape, C. E., and Love, G. D.: Development and Use of
Catalytic Hydropyrolysis (HyPy) as an Analytical Tool for Organic
Geochemical Applications, in: Principles and Practice of Analytical
Techniques in Geosciences, edited by: Grice, K., Roy. Soc. Ch.,
171–208, 2014.
Mißbach, H., Schmidt, B. C., Duda, J.-P., Lünsdorf, N. K., Goetz,
W., and Thiel, V.: Assessing the diversity of lipids formed via
Fischer-Tropsch-type reactions, Org. Geochem., 119, 110–121, https://doi.org/10.1016/j.orggeochem.2018.02.012, 2018.
Morag, N., Williford, K. H., Kitajima, K., Philippot, P., Van Kranendonk, M.
J., Lepot, K., Thomazo, C., and Valley, J. W.: Microstructure-specific
carbon isotopic signatures of organic matter from ∼3.5 Ga
cherts of the Pilbara Craton support a biologic origin, Precambrian Res.,
275, 429–449, https://doi.org/10.1016/j.precamres.2016.01.014, 2016.
Nicolau, C., Reich, M., and Lynne, B.: Physico-chemical and environmental
controls on siliceous sinter formation at the high-altitude El Tatio
geothermal field, Chile, J. Volcanol. Geoth. Res., 282, 60–76, https://doi.org/10.1016/j.jvolgeores.2014.06.012, 2014.
Olcott Marshall, A., Emry, J. R., and Marshall, C. P.: Multiple Generations
of Carbon in the Apex Chert and Implications for Preservation of
Microfossils, Astrobiology, 12, 160–166, https://doi.org/10.1089/ast.2011.0729, 2012.
Otto, A. and Simoneit, B. R. T.: Biomarkers of Holocene buried conifer logs
from Bella Coola and north Vancouver, British Columbia, Canada, Org.
Geochem., 33, 1241–1251, https://doi.org/10.1016/S0146-6380(02)00139-0, 2002.
Owen, R. B., Renaut, R. W., Muiruri, V. M., Rabideaux, N. M., Lowenstein, T.
K., McNulty, E. P., Leet, K., Deocampo, D., Luo, S., Deino, A. L., Cohen,
A., Sier, M. J., Campisano, C., Shen, C.-C., Billingsley, A., Mbuthia, A.,
and Stockhecke, M.: Quaternary history of the Lake Magadi Basin, southern
Kenya Rift: Tectonic and climatic controls, Palaeogeogr. Palaeocl., 518, 97–118, https://doi.org/10.1016/j.palaeo.2019.01.017, 2019.
Pancost, R. D., Coleman, J. M., Love, G. D., Chatzi, A., Bouloubassi, I.,
and Snape, C. E.: Kerogen-bound glycerol dialkyl tetraether lipids released
by hydropyrolysis of marine sediments: A bias against incorporation of
sedimentary organisms?, Org. Geochem., 39, 1359–1371, https://doi.org/10.1016/j.orggeochem.2008.05.002, 2008.
Pancost, R. D., McClymont, E. L., Bingham, E. M., Roberts, Z., Charman, D.
J., Hornibrook, E. R. C., Blundell, A., Chambers, F. M., Lim, K. L. H., and
Evershed, R. P.: Archaeol as a methanogen biomarker in ombrotrophic bogs,
Org. Geochem., 42, 1279–1287, https://doi.org/10.1016/j.orggeochem.2011.07.003, 2011.
Parkes, R. J. and Taylor, J.: The relationship between fatty acid
distributions and bacterial respiratory types in contemporary marine
sediments, Eustuar. Coast. Shelf S., 16, 175–189, https://doi.org/10.1016/0272-7714(83)90139-7, 1983.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide: I.
Biomarkers and Isotopes in the Environment and Human History, 2nd ed.,
Cambridge University Press., Cambridge, UK, 471 pp., 2005a.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide: II.
Biomarkers and Isotopes in Petroleum Exploration and Earth History, 2nd ed.,
Cambridge University Press, Cambridge, UK, 1155 pp., 2005b.
Pirajno, F. and van Kranendonk, M. J.: Review of hydrothermal processes and
systems on Earth and implications for Martian analogues, Aust. J. Earth
Sci., 52, 329–351, https://doi.org/10.1080/08120090500134571, 2005.
Qu, Y., Engdahl, A., Zhu, S., Vajda, V., McLoughlin, N.: Ultrastructural
Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating
Biosignature Origin and Preservation, Astrobiology, 15, 825–842, https://doi.org/10.1089/ast.2015.1298, 2015.
Radke, M. and Welte, D. H.: The Methylphenanthrene Index (MPI): a maturity
parameter based on aromatic hydrocarbons, in: Advances in Organic
Geochemistry 1981, edited by: Bjorøy, M. et al., Chichester, New York, 504–512, 1983.
Rebelo, S. L. H., Guedes, A., Szefczyk, M. E., Pereira, A. M., Araújo,
J. P., and Freire, C.: Progress in the Raman spectra analysis of covalently
functionalized multiwalled carbon nanotubes: unraveling disorder in
graphitic materials, Phys. Chem. Chem. Phys., 18, 12784–12796, https://doi.org/10.1039/C5CP06519D, 2016.
Renaut, R. W., Jones, B., Tiercelin, J.-J., and Tarits, C.: Sublacustrine
precipitation of hydrothermal silica in rift lakes: evidence from Lake
Baringo, central Kenya Rift Valley, Sediment. Geol., 148, 235–257, https://doi.org/10.1016/S0037-0738(01)00220-2, 2002.
Risatti, J. B., Rowland, S. J., Yon, D. A., and Maxwell, J. R.:
Stereochemical studies of acyclic isoprenoids – XII. Lipids of methanogenic
bacteria and possible contributions to sediments, Org. Geochem., 6, 93–104, https://doi.org/10.1016/0146-6380(84)90030-5, 1984.
Roberts, N., Taieb, M., Barker, P., Damnati, B., Icole, M., and Williamson,
D.: Timing of the Younger Dryas event in East Africa from lake-level
changes, Nature, 366, 146–148, https://doi.org/10.1038/366146a0, 1993.
Röhricht, C.: Lithologie und Genese der Chertserien des Magadi Beckens,
Lake Magadi, Kenia, Papierflieger, Clausthal-Zellerfeld, Germany, 108 pp., 1999.
Rossel, P. E., Stubbins, A., Rebling, T., Koschinsky, A., Hawkes, J. A., and
Dittmar, T.: Thermally altered marine dissolved organic matter in
hydrothermal fluids, Org. Geochem., 110, 73–86, https://doi.org/10.1016/j.orggeochem.2017.05.003, 2017.
Rushdi, A. I. and Simoneit, B. R. T.: Lipid Formation by Aqueous
Fischer-Tropsch-Type Synthesis over a Temperature Range of 100 to 400 ∘C, Origins Life Evol. B., 31, 103–118, https://doi.org/10.1023/A:1006702503954, 2001.
Scalan, E. S. and Smith, J. E.: An improved measure of the odd-even
predominance in the normal alkanes of sediment extracts and petroleum,
Geochim. Cosmochim. Ac., 34, 611–620, https://doi.org/10.1016/0016-7037(70)90019-0, 1970.
Schidlowski, M.: A 3,800-million-year isotopic record of life from carbon in
sedimentary rocks, Nature, 333, 313–318, https://doi.org/10.1038/333313a0, 1988.
Schidlowski, M.: Carbon isotopes as biogeochemical recorders of life over
3.8 Ga of Earth history: evolution of a concept, Precambrian Res., 106,
117–134, https://doi.org/10.1016/S0301-9268(00)00128-5, 2001.
Schidlowski, M., Matzigkeit, U., and Krumbein, W. E.: Superheavy Organic
Carbon from Hypersaline Microbial Mats, Naturwissenschaften, 71, 303–308,
1984.
Schidlowski, M., Gorzawski, H., and Dor, I.: Carbon isotope variations in a
solar pond microbial mat: Role of environmental gradients as steering
variables, Geochim. Cosmochim. Ac., 58, 2289–2298, https://doi.org/10.1016/0016-7037(94)90011-6, 1994.
Schito, A., Romano, C., Corrado, S., Grigo, D., and Poe, B.: Diagenetic
thermal evolution of organic matter by Raman spectroscopy, Org. Geochem.,
106, 57–67, https://doi.org/10.1016/j.orggeochem.2016.12.006, 2017.
Schmidt, M. W. I. and Noack, A. G.: Black carbon in soils and sediments:
Analysis, distribution, implications, and current challenges, Global
Biogeochem. Cy., 14, 777–793, https://doi.org/10.1029/1999GB001208, 2000.
Schouten, S., Hartgers, W. A., Lòpez, J. F., Grimalt, J. O., and
Sinninghe Damsté, J. S.: A molecular isotopic study of 13C-enriched
organic matter in evaporitic deposits: recognition of CO2-limited
ecosystems, Org. Geochem., 32, 277–286, https://doi.org/10.1016/S0146-6380(00)00177-7,
2001.
Sforna, M. C., van Zuilen, M. A., and Philippot, P.: Structural
characterization by Raman hyperspectral mapping of organic carbon in the
3.46 billion-year-old Apex chert, Western Australia, Geochim. Cosmochim.
Ac., 124, 18–33, https://doi.org/10.1016/j.gca.2013.09.031, 2014.
Simoneit, B. R. T.: Hydrothermal effects on organic matter – high vs. low
temperature components, Org. Geochem., 6, 857–864, https://doi.org/10.1016/0146-6380(84)90108-6, 1984.
Simoneit, B. R. T., Grimalt, J. O., Hayes, J. M., and Hartman, H.: Low
temperature hydrothermal maturation of organic matter in sediments from the
Atlantis II Deep, Red Sea, Geochim. Cosmochim. Ac., 51, 879–894, https://doi.org/10.1016/0016-7037(87)90101-3, 1987.
Simoneit, B. R. T., Deamer, D. W., and Kompanichenko, V.: Characterization
of hydrothermally generated oil from the Uzon caldera, Kamchatka, Appl.
Geochem., 24, 303–309, https://doi.org/10.1016/j.apgeochem.2008.10.007, 2009.
Sinninghe Damsté, J. S. and de Leeuw, J. W.: Analysis, structure and
geochemical significance of organically-bound Sulphur in the geosphere:
State of the art and future research, Org. Geochem., 16, 1077–1101, https://doi.org/10.1016/0146-6380(90)90145-P, 1990.
Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global
distribution of C3 and C4 vegetation: Carbon cycle implications,
Global Biogeochem. Cy., 17, 6-1–6-14, https://doi.org/10.1029/2001GB001807, 2003.
Sugitani, K., Yamamoto, K., Wada, H., Binu-Lal, S. S., and Yoneshige, M.:
Geochemistry of Archean carbonaceous cherts deposited at immature island-arc
setting in the Pilbara Block, Western Australia, Sediment. Geol., 151,
45–66, https://doi.org/10.1016/S0037-0738(01)00230-5, 2002.
Taipale, S. J., Strandberg, U., Peltomaa, E., Galloway, A. W. E., Ojala, A.,
and Brett, M. T.: Fatty acid composition as biomarkers of freshwater
microalgae: analysis of 37 strains of microalgae in 22 genera and in seven
classes, Aquat. Microb. Ecol., 71, 165–178, https://doi.org/10.3354/ame01671, 2013.
Taipale, S. J., Hiltunen, M., Vuorio, K., and Peltomaa, E.: Suitability of
Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for
Phytoplankton, Front. Plant Sci., 7, 1–16, https://doi.org/10.3389/fpls.2016.00212, 2016.
Teixidor, P., Grimalt, J. O., Pueyo, J. J., and Rodriguez-Valera, F.:
Isopranylglycerol diethers in non-alkaline evaporitic environments, Geochim.
Cosmochim. Ac., 57, 4479–4489, https://doi.org/10.1016/0016-7037(93)90497-K, 1993.
ten Haven, H. L., de Leeuw, J. W., Rullkötter, J., and Sinninghe
Damsté, J. S.: Restricted utility of the pristane/phytane ratio as a
palaeoenvironmental indicator, Nature, 330, 641–643, https://doi.org/10.1038/330641a0,
1987.
ten Haven, H. L., Rohmer, M., Rullkötter, J., and Bisseret, P.:
Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously
in marine sediments, Geochim. Cosmochim. Ac., 53, 3073–3079, https://doi.org/10.1016/0016-7037(89)90186-5, 1989.
Thiel, V., Jenisch, A., Landmann, G., Reimer, A., and Michaelis, W.: Unusual
distributions of long-chain alkenones and tetrahymanol from the highly
alkaline Lake Van, Turkey, Geochim. Cosmochim. Ac., 61, 2053–2064, https://doi.org/10.1016/S0016-7037(97)00038-0, 1997.
Tice, M. M. and Lowe, D. R.: The origin of carbonaceous matter in pre-3.0
Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef
Chert, Earth-Sci. Rev., 76, 259–300, https://doi.org/10.1016/j.earscirev.2006.03.003, 2006.
Tindall, B. J.: Qualitative and Quantitative Distribution of Diether Lipids
in Haloalkaliphilic Archaebacteria, Syst. Appl. Microbiol., 6, 243–246, https://doi.org/10.1016/S0723-2020(85)80025-4, 1985.
Tindall, B. J., Ross, H. N. M., and Grant, W. D.: Natronobacterium gen. nov.
and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic
Archaebacteria, Syst. Appl. Microbiol., 5, 41–57, https://doi.org/10.1016/S0723-2020(84)80050-8, 1984.
Tissot, B. P. and Welte, D. H.: Petroleum formation and occurrence, 2nd
edn., Springer, Berlin, Germany, 1984.
Ueno, Y., Yoshioka, H., Maruyama, S., and Isozaki, Y.: Carbon isotopes and
petrography of kerogens in ∼3.5-Ga hydrothermal silica dikes
in the North Pole area, Western Australia, Geochim. Cosmochim. Ac., 68,
573–589, https://doi.org/10.1016/S0016-7037(03)00462-9, 2004.
van Bergen, P. F., Nott, C. J., Bull, I. D., Poulton, P. R., and Evershed,
R. P.: Organic geochemical studies of soils from the Rothamsted Classical
Experiments – IV. Preliminary results from a study of the effect of soil pH
on organic matter decay, Org. Geochem., 29, 1779–1795, https://doi.org/10.1016/S0146-6380(98)00188-0, 1998.
van den Boorn, S. H. J. M., van Bergen, M. J., Nijman, W., and Vroon, P. Z.:
Dual role of seawater and hydrothermal fluids in Early Archean chert
formation: Evidence from silicon isotopes, Geology, 35, 939–942, https://doi.org/10.1130/G24096A.1, 2007.
Villanueva, L., Sinninghe Damsté, J. S., and Schouten, S.: A
re-evaluation of the archaeal membrane lipid biosynthetic pathway, Nat. Rev.
Microbiol., 12, 438–448, https://doi.org/10.1038/nrmicro3260, 2014.
Vinçon-Laugier, A., Grossi, V., Pacton, M., Escarguel, G., and
Cravo-Laureau, C.: The alkyl glycerol ether lipid composition of
heterotrophic sulfate reducing bacteria strongly depends on growth
substrate, Org. Geochem., 98, 141–154, https://doi.org/10.1016/j.orggeochem.2016.05.015,
2016.
Wakeham, S. G., Sinninghe Damsté, J. S., Kohnen, M. E. L., and de Leeuw,
J. W.: Organic sulfur compounds formed during early diagenesis in Black Sea
sediments, Geochim. Cosmochim. Ac., 59, 521–533, https://doi.org/10.1016/0016-7037(94)00361-O, 1995.
Weston, R. J. and Woolhouse, A. D.: Organic geochemistry of the sedimentary
basins of New Zealand part IV, A biomarker study of the petroleum seepage
and some well core bitumens from the geothermal region of Ngawha Springs,
Appl. Geochem., 2, 305–319, https://doi.org/10.1016/0883-2927(87)90046-1, 1987.
Wheildon, J., Morgan, P., Williamson, K. H., Evans, T. R., and Swanberg, C.
A.: Heat flow in the Kenya rift zone, Tectonophysics, 236, 131–149, https://doi.org/10.1016/0040-1951(94)90173-2, 1994.
Williamson, D., Taieb, M., Damnati, B., Icole, M., and Thouveny, N.:
Equatorial extension of the younger Dryas event: rock magnetic evidence from
Lake Magadi (Kenya), Global Planet. Change, 7, 235–242, https://doi.org/10.1016/0921-8181(93)90053-Q, 1993.
Yang, H., Zheng, F., Xiao, W., and Xie, S.: Distinct distribution revealing
multiple bacterial sources for 1-O-monoalkyl glycerol ethers in terrestrial
and lake environments, Sci. China Earth Sci., 58, 1005–1017, https://doi.org/10.1007/s11430-014-5016-z, 2015.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette,
D., and Sylvestre, S.: PAHs in the Fraser River basin: a critical appraisal
of PAH ratios as indicators of PAH source and composition, Org. Geochem.,
33, 489–515, https://doi.org/10.1016/S0146-6380(02)00002-5, 2002.
Zander, J. M., Caspi, E., Pandey, G. N., and Mitra, C. R.: The presence of
tetrahymanol in Oleandra wallichii, Phytochemistry, 8, 2265–2267, https://doi.org/10.1016/S0031-9422(00)88195-9, 1969.
Short summary
Organic matter in Archean hydrothermal cherts may contain molecular traces of early life. Alteration processes during and after deposition, however, may have obliterated potential biosignatures. Our results from modern analog samples (Pleistocene cherts from Lake Magadi, Kenya) show that biomolecules can survive early hydrothermal destruction in the macromolecular fraction of the organic matter. A conservation of molecular biosignatures in Archean hydrothermal cherts therefore seems possible.
Organic matter in Archean hydrothermal cherts may contain molecular traces of early life....
Altmetrics
Final-revised paper
Preprint