Articles | Volume 16, issue 17
https://doi.org/10.5194/bg-16-3351-2019
https://doi.org/10.5194/bg-16-3351-2019
Research article
 | 
05 Sep 2019
Research article |  | 05 Sep 2019

Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d'Or Lake system

Cara C. Manning, Rachel H. R. Stanley, David P. Nicholson, Brice Loose, Ann Lovely, Peter Schlosser, and Bruce G. Hatcher

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (11 Jan 2019) by Jack Middelburg
AR by Cara Manning on behalf of the Authors (13 Feb 2019)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (14 Feb 2019) by Jack Middelburg
ED: Publish subject to technical corrections (14 Jul 2019) by Jack Middelburg
AR by Cara Manning on behalf of the Authors (03 Aug 2019)  Author's response   Manuscript 
Download
Short summary
We measured rates of biological activity and gas exchange in a Canadian estuary during ice melt. We quantified gas exchange using inert, deliberately released tracers and found that the gas transfer rate at > 90 % ice cover was 6 % of the rate for nearly ice-free conditions. We measured oxygen concentration and isotopic composition and used the data to detect changes in the rates of photosynthesis and respiration (autotrophy and heterotrophy) as the ice melted.
Altmetrics
Final-revised paper
Preprint